{"title":"基于投资者和专家反馈的潜在投资者投资类型推荐系统模型(使用 ANFIS 和 MNN","authors":"Asefeh Asemi, Adeleh Asemi, Andrea Ko","doi":"10.1186/s40537-024-00965-y","DOIUrl":null,"url":null,"abstract":"<p>This article presents an investment recommender system based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and pre-trained weights from a Multimodal Neural Network (MNN). The model is designed to support the investment process for the customers and takes into consideration seven factors to implement the proposed investment system model through the customer or potential investor data set. The system takes input from a web-based questionnaire that collects data on investors' preferences and investment goals. The data is then preprocessed and clustered using ETL tools, JMP, MATLAB, and Python. The ANFIS-based recommender system is designed with three inputs and one output and trained using a hybrid approach over three epochs with 188 data pairs and 18 fuzzy rules. The system's performance is evaluated using metrics such as RMSE, accuracy, precision, recall, and F1-score. The system is also designed to incorporate expert feedback and opinions from investors to customize and improve investment recommendations. The article concludes that the proposed ANFIS-based investment recommender system is effective and accurate in generating investment recommendations that meet investors' preferences and goals.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"9 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN\",\"authors\":\"Asefeh Asemi, Adeleh Asemi, Andrea Ko\",\"doi\":\"10.1186/s40537-024-00965-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents an investment recommender system based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and pre-trained weights from a Multimodal Neural Network (MNN). The model is designed to support the investment process for the customers and takes into consideration seven factors to implement the proposed investment system model through the customer or potential investor data set. The system takes input from a web-based questionnaire that collects data on investors' preferences and investment goals. The data is then preprocessed and clustered using ETL tools, JMP, MATLAB, and Python. The ANFIS-based recommender system is designed with three inputs and one output and trained using a hybrid approach over three epochs with 188 data pairs and 18 fuzzy rules. The system's performance is evaluated using metrics such as RMSE, accuracy, precision, recall, and F1-score. The system is also designed to incorporate expert feedback and opinions from investors to customize and improve investment recommendations. The article concludes that the proposed ANFIS-based investment recommender system is effective and accurate in generating investment recommendations that meet investors' preferences and goals.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00965-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00965-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
This article presents an investment recommender system based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and pre-trained weights from a Multimodal Neural Network (MNN). The model is designed to support the investment process for the customers and takes into consideration seven factors to implement the proposed investment system model through the customer or potential investor data set. The system takes input from a web-based questionnaire that collects data on investors' preferences and investment goals. The data is then preprocessed and clustered using ETL tools, JMP, MATLAB, and Python. The ANFIS-based recommender system is designed with three inputs and one output and trained using a hybrid approach over three epochs with 188 data pairs and 18 fuzzy rules. The system's performance is evaluated using metrics such as RMSE, accuracy, precision, recall, and F1-score. The system is also designed to incorporate expert feedback and opinions from investors to customize and improve investment recommendations. The article concludes that the proposed ANFIS-based investment recommender system is effective and accurate in generating investment recommendations that meet investors' preferences and goals.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.