Luqman Ali, Hamad AlJassmi, Mohammed Swavaf, Wasif Khan, Fady Alnajjar
{"title":"Rs-net:用于路面裂缝细分和严重程度评估的残差夏普 U-Net 架构","authors":"Luqman Ali, Hamad AlJassmi, Mohammed Swavaf, Wasif Khan, Fady Alnajjar","doi":"10.1186/s40537-024-00981-y","DOIUrl":null,"url":null,"abstract":"<p>U-net, a fully convolutional network-based image segmentation method, has demonstrated widespread adaptability in the crack segmentation task. The combination of the semantically dissimilar features of the encoder (shallow layers) and the decoder (deep layers) in the skip connections leads to blurry features map and leads to undesirable over- or under-segmentation of target regions. Additionally, the shallow architecture of the U-Net model prevents the extraction of more discriminatory information from input images. This paper proposes a Residual Sharp U-Net (RS-Net) architecture for crack segmentation and severity assessment in pavement surfaces to address these limitations. The proposed architecture uses residual block in the U-Net model to extract a more insightful representation of features. In addition to that, a sharpening kernel filter is used instead of plain skip connections to generate a fine-tuned encoder features map before combining it with decoder features maps to reduce the dissimilarity between them and smoothes artifacts in the network layers during early training. The proposed architecture is also integrated with various morphological operations to assess the severity of cracks and categorize them into hairline, medium, and severe labels. Experiments results demonstrated that the RS-Net model has promising segmentation performance, outperforming earlier U-Net variations on testing data for crack segmentation and severity assessment, with a promising accuracy (>0.97)</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"80 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rs-net: Residual Sharp U-Net architecture for pavement crack segmentation and severity assessment\",\"authors\":\"Luqman Ali, Hamad AlJassmi, Mohammed Swavaf, Wasif Khan, Fady Alnajjar\",\"doi\":\"10.1186/s40537-024-00981-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>U-net, a fully convolutional network-based image segmentation method, has demonstrated widespread adaptability in the crack segmentation task. The combination of the semantically dissimilar features of the encoder (shallow layers) and the decoder (deep layers) in the skip connections leads to blurry features map and leads to undesirable over- or under-segmentation of target regions. Additionally, the shallow architecture of the U-Net model prevents the extraction of more discriminatory information from input images. This paper proposes a Residual Sharp U-Net (RS-Net) architecture for crack segmentation and severity assessment in pavement surfaces to address these limitations. The proposed architecture uses residual block in the U-Net model to extract a more insightful representation of features. In addition to that, a sharpening kernel filter is used instead of plain skip connections to generate a fine-tuned encoder features map before combining it with decoder features maps to reduce the dissimilarity between them and smoothes artifacts in the network layers during early training. The proposed architecture is also integrated with various morphological operations to assess the severity of cracks and categorize them into hairline, medium, and severe labels. Experiments results demonstrated that the RS-Net model has promising segmentation performance, outperforming earlier U-Net variations on testing data for crack segmentation and severity assessment, with a promising accuracy (>0.97)</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00981-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00981-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Rs-net: Residual Sharp U-Net architecture for pavement crack segmentation and severity assessment
U-net, a fully convolutional network-based image segmentation method, has demonstrated widespread adaptability in the crack segmentation task. The combination of the semantically dissimilar features of the encoder (shallow layers) and the decoder (deep layers) in the skip connections leads to blurry features map and leads to undesirable over- or under-segmentation of target regions. Additionally, the shallow architecture of the U-Net model prevents the extraction of more discriminatory information from input images. This paper proposes a Residual Sharp U-Net (RS-Net) architecture for crack segmentation and severity assessment in pavement surfaces to address these limitations. The proposed architecture uses residual block in the U-Net model to extract a more insightful representation of features. In addition to that, a sharpening kernel filter is used instead of plain skip connections to generate a fine-tuned encoder features map before combining it with decoder features maps to reduce the dissimilarity between them and smoothes artifacts in the network layers during early training. The proposed architecture is also integrated with various morphological operations to assess the severity of cracks and categorize them into hairline, medium, and severe labels. Experiments results demonstrated that the RS-Net model has promising segmentation performance, outperforming earlier U-Net variations on testing data for crack segmentation and severity assessment, with a promising accuracy (>0.97)
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.