Bubryur Kim, K. R. Sri Preethaa, Sujeen Song, R. R. Lukacs, Jinwoo An, Zengshun Chen, Euijung An, Sungho Kim
{"title":"基于物联网和集合学习的智能建筑工地身心疲劳监测","authors":"Bubryur Kim, K. R. Sri Preethaa, Sujeen Song, R. R. Lukacs, Jinwoo An, Zengshun Chen, Euijung An, Sungho Kim","doi":"10.1186/s40537-024-00978-7","DOIUrl":null,"url":null,"abstract":"<p>The construction industry substantially contributes to the economic growth of a country. However, it records a large number of workplace injuries and fatalities annually due to its hesitant adoption of automated safety monitoring systems. To address this critical concern, this study presents a real-time monitoring approach that uses the Internet of Things and ensemble learning. This study leverages wearable sensor technology, such as photoplethysmography and electroencephalography sensors, to continuously track the physiological parameters of construction workers. The sensor data is processed using an ensemble learning approach called the ChronoEnsemble Fatigue Analysis System (CEFAS), comprising deep autoregressive and temporal fusion transformer models, to accurately predict potential physical and mental fatigue. Comprehensive evaluation metrics, including mean square error, mean absolute scaled error, and symmetric mean absolute percentage error, demonstrated the superior prediction accuracy and reliability of the proposed model compared to standalone models. The ensemble learning model exhibited remarkable precision in predicting physical and mental fatigue, as evidenced by the mean square errors of 0.0008 and 0.0033, respectively. The proposed model promptly recognizes potential hazards and irregularities, considerably enhancing worker safety and reducing on-site risks.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"42 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet of things and ensemble learning-based mental and physical fatigue monitoring for smart construction sites\",\"authors\":\"Bubryur Kim, K. R. Sri Preethaa, Sujeen Song, R. R. Lukacs, Jinwoo An, Zengshun Chen, Euijung An, Sungho Kim\",\"doi\":\"10.1186/s40537-024-00978-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The construction industry substantially contributes to the economic growth of a country. However, it records a large number of workplace injuries and fatalities annually due to its hesitant adoption of automated safety monitoring systems. To address this critical concern, this study presents a real-time monitoring approach that uses the Internet of Things and ensemble learning. This study leverages wearable sensor technology, such as photoplethysmography and electroencephalography sensors, to continuously track the physiological parameters of construction workers. The sensor data is processed using an ensemble learning approach called the ChronoEnsemble Fatigue Analysis System (CEFAS), comprising deep autoregressive and temporal fusion transformer models, to accurately predict potential physical and mental fatigue. Comprehensive evaluation metrics, including mean square error, mean absolute scaled error, and symmetric mean absolute percentage error, demonstrated the superior prediction accuracy and reliability of the proposed model compared to standalone models. The ensemble learning model exhibited remarkable precision in predicting physical and mental fatigue, as evidenced by the mean square errors of 0.0008 and 0.0033, respectively. The proposed model promptly recognizes potential hazards and irregularities, considerably enhancing worker safety and reducing on-site risks.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00978-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00978-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Internet of things and ensemble learning-based mental and physical fatigue monitoring for smart construction sites
The construction industry substantially contributes to the economic growth of a country. However, it records a large number of workplace injuries and fatalities annually due to its hesitant adoption of automated safety monitoring systems. To address this critical concern, this study presents a real-time monitoring approach that uses the Internet of Things and ensemble learning. This study leverages wearable sensor technology, such as photoplethysmography and electroencephalography sensors, to continuously track the physiological parameters of construction workers. The sensor data is processed using an ensemble learning approach called the ChronoEnsemble Fatigue Analysis System (CEFAS), comprising deep autoregressive and temporal fusion transformer models, to accurately predict potential physical and mental fatigue. Comprehensive evaluation metrics, including mean square error, mean absolute scaled error, and symmetric mean absolute percentage error, demonstrated the superior prediction accuracy and reliability of the proposed model compared to standalone models. The ensemble learning model exhibited remarkable precision in predicting physical and mental fatigue, as evidenced by the mean square errors of 0.0008 and 0.0033, respectively. The proposed model promptly recognizes potential hazards and irregularities, considerably enhancing worker safety and reducing on-site risks.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.