{"title":"制备和评估用于改进亚甲基蓝降解的 Co-TiO2/Ag3PO4 Z 型光催化剂","authors":"Mingxia Tian, Xindong Wang, Yumin Yan, Yuan Zhang, Guyu Zhang, Tianyi Cui, Jianbo Zhao, Jianhui Jiang","doi":"10.1134/S1070427224020150","DOIUrl":null,"url":null,"abstract":"<p>Water resources are crucial for human life. However, current water resource treatment methods have limitations. In this regard, photocatalysis is a promising water resource treatment technology with a simple operation, green environmental protection, and high economic benefits. Therefore, this study prepared a Co-TiO<sub>2</sub>/Ag<sub>3</sub>PO<sub>4</sub> (CTAP) photocatalyst for the treatment of water resources. Here, a Co-TiO<sub>2</sub>/Ag<sub>3</sub>PO<sub>4</sub> photocatalyst was prepared using a hydrothermal method combined with calcination. Under visible light irradiation, the methylene blue (MB) degradation degree of CTAP composite reached 96.4% within 14 min, and the degradation rate constant was 0.23516 min<sup>–1</sup>. These reaction rates are 137 and 3.4 times higher than those of pure TiO<sub>2</sub> and Ag<sub>3</sub>PO<sub>4</sub> samples, respectively. Thus, doping and heterojunctions significantly improved the photocatalytic performance of CTAP composites, primarily due to grain size reduction of TiO<sub>2</sub> after Co<sup>2+</sup> doping. The formation of a close interfacial connection with Ag<sub>3</sub>PO<sub>4</sub> increased the active site of the reaction and promoted the transfer of photogenerated charges, thus improving the photocatalytic performance of CTAP composites. According to the photocatalytic capture experiments of the active species, e<sup>-</sup>, h<sup>+</sup>, <sup>•</sup>O<sup>2–</sup>, and <sup>•</sup>OH play a common role in the degradation of MB. This paper provides insights into the design and preparation of a Z-scheme photocatalyst that can be considered for the degradation of pollutants in water.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":"97 3","pages":"322 - 333"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Assessment of Co-TiO2/Ag3PO4 Z-Scheme Photocatalyst for Improved Methylene Blue Degradation\",\"authors\":\"Mingxia Tian, Xindong Wang, Yumin Yan, Yuan Zhang, Guyu Zhang, Tianyi Cui, Jianbo Zhao, Jianhui Jiang\",\"doi\":\"10.1134/S1070427224020150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water resources are crucial for human life. However, current water resource treatment methods have limitations. In this regard, photocatalysis is a promising water resource treatment technology with a simple operation, green environmental protection, and high economic benefits. Therefore, this study prepared a Co-TiO<sub>2</sub>/Ag<sub>3</sub>PO<sub>4</sub> (CTAP) photocatalyst for the treatment of water resources. Here, a Co-TiO<sub>2</sub>/Ag<sub>3</sub>PO<sub>4</sub> photocatalyst was prepared using a hydrothermal method combined with calcination. Under visible light irradiation, the methylene blue (MB) degradation degree of CTAP composite reached 96.4% within 14 min, and the degradation rate constant was 0.23516 min<sup>–1</sup>. These reaction rates are 137 and 3.4 times higher than those of pure TiO<sub>2</sub> and Ag<sub>3</sub>PO<sub>4</sub> samples, respectively. Thus, doping and heterojunctions significantly improved the photocatalytic performance of CTAP composites, primarily due to grain size reduction of TiO<sub>2</sub> after Co<sup>2+</sup> doping. The formation of a close interfacial connection with Ag<sub>3</sub>PO<sub>4</sub> increased the active site of the reaction and promoted the transfer of photogenerated charges, thus improving the photocatalytic performance of CTAP composites. According to the photocatalytic capture experiments of the active species, e<sup>-</sup>, h<sup>+</sup>, <sup>•</sup>O<sup>2–</sup>, and <sup>•</sup>OH play a common role in the degradation of MB. This paper provides insights into the design and preparation of a Z-scheme photocatalyst that can be considered for the degradation of pollutants in water.</p>\",\"PeriodicalId\":757,\"journal\":{\"name\":\"Russian Journal of Applied Chemistry\",\"volume\":\"97 3\",\"pages\":\"322 - 333\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1070427224020150\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070427224020150","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Fabrication and Assessment of Co-TiO2/Ag3PO4 Z-Scheme Photocatalyst for Improved Methylene Blue Degradation
Water resources are crucial for human life. However, current water resource treatment methods have limitations. In this regard, photocatalysis is a promising water resource treatment technology with a simple operation, green environmental protection, and high economic benefits. Therefore, this study prepared a Co-TiO2/Ag3PO4 (CTAP) photocatalyst for the treatment of water resources. Here, a Co-TiO2/Ag3PO4 photocatalyst was prepared using a hydrothermal method combined with calcination. Under visible light irradiation, the methylene blue (MB) degradation degree of CTAP composite reached 96.4% within 14 min, and the degradation rate constant was 0.23516 min–1. These reaction rates are 137 and 3.4 times higher than those of pure TiO2 and Ag3PO4 samples, respectively. Thus, doping and heterojunctions significantly improved the photocatalytic performance of CTAP composites, primarily due to grain size reduction of TiO2 after Co2+ doping. The formation of a close interfacial connection with Ag3PO4 increased the active site of the reaction and promoted the transfer of photogenerated charges, thus improving the photocatalytic performance of CTAP composites. According to the photocatalytic capture experiments of the active species, e-, h+, •O2–, and •OH play a common role in the degradation of MB. This paper provides insights into the design and preparation of a Z-scheme photocatalyst that can be considered for the degradation of pollutants in water.
期刊介绍:
Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.