{"title":"三维复杂等离子体隙内纳米结构的合成及其在表面增强拉曼散射中的应用的最新进展","authors":"Li Ma, Keyi Zhou, Xinyue Wang, Jiayue Wang, Ruyu Zhao, Yifei Zhang, Fang Cheng","doi":"10.3390/bios14090433","DOIUrl":null,"url":null,"abstract":"Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light–matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering\",\"authors\":\"Li Ma, Keyi Zhou, Xinyue Wang, Jiayue Wang, Ruyu Zhao, Yifei Zhang, Fang Cheng\",\"doi\":\"10.3390/bios14090433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light–matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.\",\"PeriodicalId\":100185,\"journal\":{\"name\":\"Biosensors\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14090433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14090433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent Progress in the Synthesis of 3D Complex Plasmonic Intragap Nanostructures and Their Applications in Surface-Enhanced Raman Scattering
Plasmonic intragap nanostructures (PINs) have garnered intensive attention in Raman-related analysis due to their exceptional ability to enhance light–matter interactions. Although diverse synthetic strategies have been employed to create these nanostructures, the emphasis has largely been on PINs with simple configurations, which often fall short in achieving effective near-field focusing. Three-dimensional (3D) complex PINs, distinguished by their intricate networks of internal gaps and voids, are emerging as superior structures for effective light trapping. These structures facilitate the generation of hot spots and hot zones that are essential for enhanced near-field focusing. Nevertheless, the synthesis techniques for these complex structures and their specific impacts on near-field focusing are not well-documented. This review discusses the recent advancements in the synthesis of 3D complex PINs and their applications in surface-enhanced Raman scattering (SERS). We begin by describing the foundational methods for fabricating simple PINs, followed by a discussion on the rational design strategies aimed at developing 3D complex PINs with superior near-field focusing capabilities. We also evaluate the SERS performance of various 3D complex PINs, emphasizing their advanced sensing capabilities. Lastly, we explore the future perspective of 3D complex PINs in SERS applications.