Javier Valverde-Pozo, Jose M. Paredes, María Eugenia García-Rubiño, María Dolores Girón, Rafael Salto, Jose M. Alvarez-Pez, Eva M. Talavera
{"title":"利用荧光酶传感器检测 pepN 活性的细菌生物膜先进成像方法","authors":"Javier Valverde-Pozo, Jose M. Paredes, María Eugenia García-Rubiño, María Dolores Girón, Rafael Salto, Jose M. Alvarez-Pez, Eva M. Talavera","doi":"10.3390/bios14090424","DOIUrl":null,"url":null,"abstract":"This research explores the use of the pepN activity fluorescent sensor DCM-Ala in bacterial biofilms, emphasizing its significance due to the critical role of biofilms in various biological processes. Advanced imaging techniques were employed to visualize pepN activity, introducing a novel approach to examining biofilm maturity. We found that the overexpression of pepN increases the ability of E. coli to form biofilm. The findings demonstrate varying levels of pepN activity throughout biofilm development, suggesting potential applications in biofilm research and management. The results indicate that the fluorescent emission from this sensor could serve as a reliable indicator of biofilm maturity, and the imaging techniques developed could enhance our understanding and control of biofilm-related processes. This work highlights the importance of innovative methods in biofilm study and opens new avenues for utilizing chemical emissions in biofilm management.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Imaging Methodology in Bacterial Biofilms with a Fluorescent Enzymatic Sensor for pepN Activity\",\"authors\":\"Javier Valverde-Pozo, Jose M. Paredes, María Eugenia García-Rubiño, María Dolores Girón, Rafael Salto, Jose M. Alvarez-Pez, Eva M. Talavera\",\"doi\":\"10.3390/bios14090424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explores the use of the pepN activity fluorescent sensor DCM-Ala in bacterial biofilms, emphasizing its significance due to the critical role of biofilms in various biological processes. Advanced imaging techniques were employed to visualize pepN activity, introducing a novel approach to examining biofilm maturity. We found that the overexpression of pepN increases the ability of E. coli to form biofilm. The findings demonstrate varying levels of pepN activity throughout biofilm development, suggesting potential applications in biofilm research and management. The results indicate that the fluorescent emission from this sensor could serve as a reliable indicator of biofilm maturity, and the imaging techniques developed could enhance our understanding and control of biofilm-related processes. This work highlights the importance of innovative methods in biofilm study and opens new avenues for utilizing chemical emissions in biofilm management.\",\"PeriodicalId\":100185,\"journal\":{\"name\":\"Biosensors\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14090424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14090424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Imaging Methodology in Bacterial Biofilms with a Fluorescent Enzymatic Sensor for pepN Activity
This research explores the use of the pepN activity fluorescent sensor DCM-Ala in bacterial biofilms, emphasizing its significance due to the critical role of biofilms in various biological processes. Advanced imaging techniques were employed to visualize pepN activity, introducing a novel approach to examining biofilm maturity. We found that the overexpression of pepN increases the ability of E. coli to form biofilm. The findings demonstrate varying levels of pepN activity throughout biofilm development, suggesting potential applications in biofilm research and management. The results indicate that the fluorescent emission from this sensor could serve as a reliable indicator of biofilm maturity, and the imaging techniques developed could enhance our understanding and control of biofilm-related processes. This work highlights the importance of innovative methods in biofilm study and opens new avenues for utilizing chemical emissions in biofilm management.