用于快速、特异性检测生物细胞的光学干涉仪

Biosensors Pub Date : 2024-08-29 DOI:10.3390/bios14090421
Sándor Valkai, Dániel Petrovszki, Zsombor Fáskerti, Margaréta Baumgärtner, Brigitta Biczók, Kira Dakos, Kevin Dósa, Berill B. Kirner, Anna E. Kocsis, Krisztina Nagy, István Andó, András Dér
{"title":"用于快速、特异性检测生物细胞的光学干涉仪","authors":"Sándor Valkai, Dániel Petrovszki, Zsombor Fáskerti, Margaréta Baumgärtner, Brigitta Biczók, Kira Dakos, Kevin Dósa, Berill B. Kirner, Anna E. Kocsis, Krisztina Nagy, István Andó, András Dér","doi":"10.3390/bios14090421","DOIUrl":null,"url":null,"abstract":"Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting interference pattern, too. By registering and interpreting the variation in the image, the presence of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937 cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability of the device predicts its applicability as a rapid test in clinical diagnostics.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Interferometric Device for Rapid and Specific Detection of Biological Cells\",\"authors\":\"Sándor Valkai, Dániel Petrovszki, Zsombor Fáskerti, Margaréta Baumgärtner, Brigitta Biczók, Kira Dakos, Kevin Dósa, Berill B. Kirner, Anna E. Kocsis, Krisztina Nagy, István Andó, András Dér\",\"doi\":\"10.3390/bios14090421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting interference pattern, too. By registering and interpreting the variation in the image, the presence of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937 cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability of the device predicts its applicability as a rapid test in clinical diagnostics.\",\"PeriodicalId\":100185,\"journal\":{\"name\":\"Biosensors\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14090421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14090421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们报告了一种以无标记方式从液体样本中检测细胞的快速而准确的光学方法。该方法的工作原理是,来自单模光纤的锥形激光束直接照射到平面玻璃表面,并在玻璃表面反射,从而产生干涉。玻璃表面被针对液体样本中待检测细胞的抗体功能化。与玻璃表面结合的细胞会改变反射的光束,从而也会改变产生的干涉图案。通过记录和解读图像的变化,就能检测到样品中是否存在细胞。在一次演示中,U937 细胞系的细胞悬浮液被用于由抗体(TMG6-5 (mIgG1))功能化的玻璃室中,细胞与这些抗体特异性结合。同时还估算了该方法的检测限(LOD)。这种概念验证装置提供了一种经济、易用的方法,可从悬浮液(如体液)中快速、特异地检测任何类型的细胞(包括病原体)。该装置的便携性预示着它可作为临床诊断中的快速检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Interferometric Device for Rapid and Specific Detection of Biological Cells
Here, we report a rapid and accurate optical method for detecting cells from liquid samples in a label-free manner. The working principle of the method is based on the interference of parts of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting interference pattern, too. By registering and interpreting the variation in the image, the presence of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937 cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability of the device predicts its applicability as a rapid test in clinical diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection Ultrasensitive Electrochemical Biosensors Based on Allosteric Transcription Factors (aTFs) for Pb2+ Detection Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor Paper-Based Microfluidic Device for Extracellular Lactate Detection Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1