正规化和结构化张量最小二乘法及其应用

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-08-12 DOI:10.1007/s10957-024-02507-1
Feiyang Han, Yimin Wei, Pengpeng Xie
{"title":"正规化和结构化张量最小二乘法及其应用","authors":"Feiyang Han, Yimin Wei, Pengpeng Xie","doi":"10.1007/s10957-024-02507-1","DOIUrl":null,"url":null,"abstract":"<p>Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"2 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized and Structured Tensor Total Least Squares Methods with Applications\",\"authors\":\"Feiyang Han, Yimin Wei, Pengpeng Xie\",\"doi\":\"10.1007/s10957-024-02507-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02507-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02507-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

全最小二乘法(TLS)在统计分析中也被称为变量误差法,是解决线性方程的一种有效方法。此外,Tikhonov 正则化还被广泛应用于许多问题的求解。此外,映射算子的结构在解决 TLS 问题中起着至关重要的作用。张量算子在模型表征方面具有一定的优势,这就要求我们建立相应的张量 TLS 理论。本文提出了张量正则化 TLS 和结构化张量 TLS 方法,分别采用张量-张量乘积求解非条件张量方程和结构化张量方程。此外,还提出并证明了这些方法的性质和求解算法。基于这种方法,探讨了图像和视频去模糊的一些应用。数值示例说明了我们的方法与一些现有方法相比的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regularized and Structured Tensor Total Least Squares Methods with Applications

Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Effects of patient education on the oral behavior of patients with temporomandibular degenerative joint disease: a prospective case series study. On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints. Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1