Yi Zhang, Junyu Shi, Jie Zhu, Xinxin Ding, Jianxu Wei, Xue Jiang, Yijie Yang, Xiaomeng Zhang, Yongzhuo Huang, Hongchang Lai
{"title":"通过纳米槲皮素介导的糖酵解和 OXPHOS杠杆作用,重构巨噬细胞的免疫代谢线路,从而治疗牙周炎","authors":"Yi Zhang, Junyu Shi, Jie Zhu, Xinxin Ding, Jianxu Wei, Xue Jiang, Yijie Yang, Xiaomeng Zhang, Yongzhuo Huang, Hongchang Lai","doi":"10.1016/j.apsb.2024.07.008","DOIUrl":null,"url":null,"abstract":"Periodontitis is a chronic inflammatory disease marked by a dysregulated immune microenvironment, posing formidable challenges for effective treatment. The disease is characterized by an altered glucose metabolism in macrophages, specifically an increase in aerobic glycolysis, which is linked to heightened inflammatory responses. This suggests that targeting macrophage metabolism could offer a new therapeutic avenue. In this study, we develop an immunometabolic intervention using quercetin (Q) encapsulated in bioadhesive mesoporous polydopamine (Q@MPDA) to treat periodontitis. Our results demonstrate that Q@MPDA can reprogram inflammatory macrophages to an anti-inflammatory phenotype (, from-M1-to-M2 repolarization). In a murine periodontitis model, locally administered Q@MPDA reduced the presence of inflammatory macrophages, and decreased the levels of inflammatory cytokines (IL-1 and TNF-) and reactive oxygen species (ROS) in the periodontium. Consequently, it alleviated periodontitis symptoms, reduced alveolar bone loss, and promoted tissue repair. Furthermore, our study revealed that Q@MPDA could inhibit the glycolysis of inflammatory macrophages while enhancing oxidative phosphorylation (OXPHOS), facilitating the shift from M1 to M2 macrophage subtype. Our findings suggest that Q@MPDA is a promising treatment for periodontitis immunometabolic rewiring.","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"33 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunometabolic rewiring in macrophages for periodontitis treatment via nanoquercetin-mediated leverage of glycolysis and OXPHOS\",\"authors\":\"Yi Zhang, Junyu Shi, Jie Zhu, Xinxin Ding, Jianxu Wei, Xue Jiang, Yijie Yang, Xiaomeng Zhang, Yongzhuo Huang, Hongchang Lai\",\"doi\":\"10.1016/j.apsb.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodontitis is a chronic inflammatory disease marked by a dysregulated immune microenvironment, posing formidable challenges for effective treatment. The disease is characterized by an altered glucose metabolism in macrophages, specifically an increase in aerobic glycolysis, which is linked to heightened inflammatory responses. This suggests that targeting macrophage metabolism could offer a new therapeutic avenue. In this study, we develop an immunometabolic intervention using quercetin (Q) encapsulated in bioadhesive mesoporous polydopamine (Q@MPDA) to treat periodontitis. Our results demonstrate that Q@MPDA can reprogram inflammatory macrophages to an anti-inflammatory phenotype (, from-M1-to-M2 repolarization). In a murine periodontitis model, locally administered Q@MPDA reduced the presence of inflammatory macrophages, and decreased the levels of inflammatory cytokines (IL-1 and TNF-) and reactive oxygen species (ROS) in the periodontium. Consequently, it alleviated periodontitis symptoms, reduced alveolar bone loss, and promoted tissue repair. Furthermore, our study revealed that Q@MPDA could inhibit the glycolysis of inflammatory macrophages while enhancing oxidative phosphorylation (OXPHOS), facilitating the shift from M1 to M2 macrophage subtype. Our findings suggest that Q@MPDA is a promising treatment for periodontitis immunometabolic rewiring.\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsb.2024.07.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.apsb.2024.07.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Immunometabolic rewiring in macrophages for periodontitis treatment via nanoquercetin-mediated leverage of glycolysis and OXPHOS
Periodontitis is a chronic inflammatory disease marked by a dysregulated immune microenvironment, posing formidable challenges for effective treatment. The disease is characterized by an altered glucose metabolism in macrophages, specifically an increase in aerobic glycolysis, which is linked to heightened inflammatory responses. This suggests that targeting macrophage metabolism could offer a new therapeutic avenue. In this study, we develop an immunometabolic intervention using quercetin (Q) encapsulated in bioadhesive mesoporous polydopamine (Q@MPDA) to treat periodontitis. Our results demonstrate that Q@MPDA can reprogram inflammatory macrophages to an anti-inflammatory phenotype (, from-M1-to-M2 repolarization). In a murine periodontitis model, locally administered Q@MPDA reduced the presence of inflammatory macrophages, and decreased the levels of inflammatory cytokines (IL-1 and TNF-) and reactive oxygen species (ROS) in the periodontium. Consequently, it alleviated periodontitis symptoms, reduced alveolar bone loss, and promoted tissue repair. Furthermore, our study revealed that Q@MPDA could inhibit the glycolysis of inflammatory macrophages while enhancing oxidative phosphorylation (OXPHOS), facilitating the shift from M1 to M2 macrophage subtype. Our findings suggest that Q@MPDA is a promising treatment for periodontitis immunometabolic rewiring.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.