使用聚类故障时间数据进行平均残余寿命回归的条件准似然推理

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-08-22 DOI:10.1111/sjos.12746
Rui Huang, Liuquan Sun, Liming Xiang
{"title":"使用聚类故障时间数据进行平均残余寿命回归的条件准似然推理","authors":"Rui Huang, Liuquan Sun, Liming Xiang","doi":"10.1111/sjos.12746","DOIUrl":null,"url":null,"abstract":"In the analysis of clustered failure time data, Cox frailty models have been extensively studied by incorporating frailty with a prespecified distribution to address potential correlation of data within clusters. In this paper, we propose a frailty proportional mean residual life regression model to analyze such data. A novel conditional quasi‐likelihood inference procedure is developed, utilizing a stochastic process and the inverse probability of censoring weighting (IPCW) to form estimating equations for regression parameters. Our proposal employs conditional inference based on a penalized quasi‐likelihood to address within‐cluster correlation without need to specify the frailty distribution, bringing the method closer to what suffices for real‐world applications. By adopting the Buckley–James estimator in the IPCW, the method further allows for dependent censoring. We establish asymptotic properties of the proposed estimator and evaluate its finite sample performance via simulation studies. An application to the data from a multi‐institutional breast cancer study is presented for illustration.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional quasi‐likelihood inference for mean residual life regression with clustered failure time data\",\"authors\":\"Rui Huang, Liuquan Sun, Liming Xiang\",\"doi\":\"10.1111/sjos.12746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of clustered failure time data, Cox frailty models have been extensively studied by incorporating frailty with a prespecified distribution to address potential correlation of data within clusters. In this paper, we propose a frailty proportional mean residual life regression model to analyze such data. A novel conditional quasi‐likelihood inference procedure is developed, utilizing a stochastic process and the inverse probability of censoring weighting (IPCW) to form estimating equations for regression parameters. Our proposal employs conditional inference based on a penalized quasi‐likelihood to address within‐cluster correlation without need to specify the frailty distribution, bringing the method closer to what suffices for real‐world applications. By adopting the Buckley–James estimator in the IPCW, the method further allows for dependent censoring. We establish asymptotic properties of the proposed estimator and evaluate its finite sample performance via simulation studies. An application to the data from a multi‐institutional breast cancer study is presented for illustration.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12746\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12746","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在故障时间聚类数据分析中,Cox 虚弱模型已经得到了广泛的研究,该模型通过纳入具有预设分布的虚弱值来解决聚类内数据的潜在相关性问题。在本文中,我们提出了一种虚弱比例平均残余寿命回归模型来分析这类数据。我们开发了一种新颖的条件准似然推断程序,利用随机过程和反概率删减加权(IPCW)来形成回归参数的估计方程。我们的建议采用了基于惩罚性准概率的条件推断,以解决集群内相关性问题,而无需指定虚弱分布,从而使该方法更接近实际应用的需要。通过在 IPCW 中采用巴克利-詹姆斯估计器,该方法进一步允许了依赖性删减。我们通过模拟研究建立了所提估计器的渐近特性,并评估了其有限样本性能。为说明起见,我们介绍了对一项多机构乳腺癌研究数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditional quasi‐likelihood inference for mean residual life regression with clustered failure time data
In the analysis of clustered failure time data, Cox frailty models have been extensively studied by incorporating frailty with a prespecified distribution to address potential correlation of data within clusters. In this paper, we propose a frailty proportional mean residual life regression model to analyze such data. A novel conditional quasi‐likelihood inference procedure is developed, utilizing a stochastic process and the inverse probability of censoring weighting (IPCW) to form estimating equations for regression parameters. Our proposal employs conditional inference based on a penalized quasi‐likelihood to address within‐cluster correlation without need to specify the frailty distribution, bringing the method closer to what suffices for real‐world applications. By adopting the Buckley–James estimator in the IPCW, the method further allows for dependent censoring. We establish asymptotic properties of the proposed estimator and evaluate its finite sample performance via simulation studies. An application to the data from a multi‐institutional breast cancer study is presented for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1