通过不确定性量化实现核反应反演

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review C Pub Date : 2024-08-28 DOI:10.1103/physrevc.110.025504
Krishnan Raghavan, Alessandro Lovato
{"title":"通过不确定性量化实现核反应反演","authors":"Krishnan Raghavan, Alessandro Lovato","doi":"10.1103/physrevc.110.025504","DOIUrl":null,"url":null,"abstract":"Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"283 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-quantification-enabled inversion of nuclear responses\",\"authors\":\"Krishnan Raghavan, Alessandro Lovato\",\"doi\":\"10.1103/physrevc.110.025504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"283 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.025504\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.025504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

核量子多体方法依赖积分变换技术,从基态期望值推断电弱响应函数的特性。检索这些响应的能量依赖性非常不容易,尤其是对于量子蒙特卡洛方法来说,因为它需要反演拉普拉斯变换,这是一个臭名昭著的难题。在这项工作中,我们提出了一种人工神经网络架构,适用于精确的响应函数重建,并能精确估计反演的不确定性。我们展示了这种新架构的能力,并将其与最大熵和之前开发的用于类似任务的神经网络方法进行了比较,尤其关注了它对输入欧几里得响应中不断增加的噪声的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty-quantification-enabled inversion of nuclear responses
Nuclear quantum many-body methods rely on integral transform techniques to infer properties of electroweak response functions from ground-state expectation values. Retrieving the energy dependence of these responses is highly nontrivial, especially for quantum Monte Carlo methods, as it requires inverting the Laplace transform, a notoriously ill-posed problem. In this work, we propose an artificial neural network architecture suitable for accurate response function reconstruction with precise estimation of the uncertainty of the inversion. We demonstrate the capabilities of this new architecture benchmarking it against maximum entropy and previously developed neural network methods designed for a similar task, paying particular attention to its robustness against increasing noise in the input Euclidean responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
期刊最新文献
Laser-assisted deuterium-tritium fusion: A quantum dynamical model Deformation probes for light nuclei in their collisions at relativistic energies Extraction of the microscopic properties of quasiparticles using deep neural networks Novel approach to infer the H2(p,γ)He3 angular distribution: Experimental results and comparison with theoretical calculations Lifetime measurement in Ru94 and Tc93 to investigate seniority conservation in the N=50 isotones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1