TP-LSM:视觉时空金字塔时间建模网络,用于基于图像的人工智能中的多标签动作检测

Haojie Gao, Peishun Liu, Xiaolong Ma, Zikang Yan, Ningning Ma, Wenqiang Liu, Xuefang Wang, Ruichun Tang
{"title":"TP-LSM:视觉时空金字塔时间建模网络,用于基于图像的人工智能中的多标签动作检测","authors":"Haojie Gao, Peishun Liu, Xiaolong Ma, Zikang Yan, Ningning Ma, Wenqiang Liu, Xuefang Wang, Ruichun Tang","doi":"10.1007/s00371-024-03601-1","DOIUrl":null,"url":null,"abstract":"<p>Dense multi-label action detection is a challenging task in the field of visual action, where multiple actions occur simultaneously in different time spans, hence accurately assessing the short-term and long-term temporal dependencies between actions is crucial for action detection. There is an urgent need for an effective temporal modeling technology to detect the temporal dependence of actions in videos and efficiently learn long-term and short-term action information. This paper proposes a new method based on temporal pyramid and long short-term time modeling for multi-label action detection, which combines hierarchical structure with pyramid feature hierarchy for dense multi-label temporal action detection. By using the expansion and compression convolution module (SEC) and external attention for time modeling, we focus on the temporal relationships of long and short-term actions at each stage. We then integrate hierarchical pyramid features to achieve accurate detection of actions at different temporal resolution scales. We evaluated the performance of the model on dense multi-label benchmark datasets, and achieved mAP of 47.3% and 36.0% on the MultiTHUMOS and TSU datasets, which outperforms 2.7% and 2.3% on the current state-of-the-art results. The code is available at https://github.com/Yoona6371/TP-LSM.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TP-LSM: visual temporal pyramidal time modeling network to multi-label action detection in image-based AI\",\"authors\":\"Haojie Gao, Peishun Liu, Xiaolong Ma, Zikang Yan, Ningning Ma, Wenqiang Liu, Xuefang Wang, Ruichun Tang\",\"doi\":\"10.1007/s00371-024-03601-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dense multi-label action detection is a challenging task in the field of visual action, where multiple actions occur simultaneously in different time spans, hence accurately assessing the short-term and long-term temporal dependencies between actions is crucial for action detection. There is an urgent need for an effective temporal modeling technology to detect the temporal dependence of actions in videos and efficiently learn long-term and short-term action information. This paper proposes a new method based on temporal pyramid and long short-term time modeling for multi-label action detection, which combines hierarchical structure with pyramid feature hierarchy for dense multi-label temporal action detection. By using the expansion and compression convolution module (SEC) and external attention for time modeling, we focus on the temporal relationships of long and short-term actions at each stage. We then integrate hierarchical pyramid features to achieve accurate detection of actions at different temporal resolution scales. We evaluated the performance of the model on dense multi-label benchmark datasets, and achieved mAP of 47.3% and 36.0% on the MultiTHUMOS and TSU datasets, which outperforms 2.7% and 2.3% on the current state-of-the-art results. The code is available at https://github.com/Yoona6371/TP-LSM.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03601-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03601-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密集多标签动作检测是视觉动作领域的一项具有挑战性的任务,因为多个动作会在不同的时间跨度内同时发生,因此准确评估动作之间的短期和长期时间依赖性对于动作检测至关重要。目前迫切需要一种有效的时空建模技术来检测视频中动作的时空依赖性,并高效地学习长期和短期动作信息。本文提出了一种基于时空金字塔和长短期时间建模的多标签动作检测新方法,该方法将分层结构与金字塔特征层次相结合,实现了密集的多标签时空动作检测。通过使用扩展和压缩卷积模块(SEC)和外部注意力进行时间建模,我们关注了每个阶段的长短期动作的时间关系。然后,我们整合了分层金字塔特征,实现了对不同时间分辨率尺度的动作的精确检测。我们在密集多标签基准数据集上评估了该模型的性能,在 MultiTHUMOS 和 TSU 数据集上的 mAP 分别为 47.3% 和 36.0%,优于目前最先进结果的 2.7% 和 2.3%。代码可在 https://github.com/Yoona6371/TP-LSM 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TP-LSM: visual temporal pyramidal time modeling network to multi-label action detection in image-based AI

Dense multi-label action detection is a challenging task in the field of visual action, where multiple actions occur simultaneously in different time spans, hence accurately assessing the short-term and long-term temporal dependencies between actions is crucial for action detection. There is an urgent need for an effective temporal modeling technology to detect the temporal dependence of actions in videos and efficiently learn long-term and short-term action information. This paper proposes a new method based on temporal pyramid and long short-term time modeling for multi-label action detection, which combines hierarchical structure with pyramid feature hierarchy for dense multi-label temporal action detection. By using the expansion and compression convolution module (SEC) and external attention for time modeling, we focus on the temporal relationships of long and short-term actions at each stage. We then integrate hierarchical pyramid features to achieve accurate detection of actions at different temporal resolution scales. We evaluated the performance of the model on dense multi-label benchmark datasets, and achieved mAP of 47.3% and 36.0% on the MultiTHUMOS and TSU datasets, which outperforms 2.7% and 2.3% on the current state-of-the-art results. The code is available at https://github.com/Yoona6371/TP-LSM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1