SpeechCraft:具有自然语言描述的精细表达语音数据集

Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao Zhou, Xiaoyu Qin, Zhiyong Wu
{"title":"SpeechCraft:具有自然语言描述的精细表达语音数据集","authors":"Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao Zhou, Xiaoyu Qin, Zhiyong Wu","doi":"arxiv-2408.13608","DOIUrl":null,"url":null,"abstract":"Speech-language multi-modal learning presents a significant challenge due to\nthe fine nuanced information inherent in speech styles. Therefore, a\nlarge-scale dataset providing elaborate comprehension of speech style is\nurgently needed to facilitate insightful interplay between speech audio and\nnatural language. However, constructing such datasets presents a major\ntrade-off between large-scale data collection and high-quality annotation. To\ntackle this challenge, we propose an automatic speech annotation system for\nexpressiveness interpretation that annotates in-the-wild speech clips with\nexpressive and vivid human language descriptions. Initially, speech audios are\nprocessed by a series of expert classifiers and captioning models to capture\ndiverse speech characteristics, followed by a fine-tuned LLaMA for customized\nannotation generation. Unlike previous tag/templet-based annotation frameworks\nwith limited information and diversity, our system provides in-depth\nunderstandings of speech style through tailored natural language descriptions,\nthereby enabling accurate and voluminous data generation for large model\ntraining. With this system, we create SpeechCraft, a fine-grained bilingual\nexpressive speech dataset. It is distinguished by highly descriptive natural\nlanguage style prompts, containing approximately 2,000 hours of audio data and\nencompassing over two million speech clips. Extensive experiments demonstrate\nthat the proposed dataset significantly boosts speech-language task performance\nin stylist speech synthesis and speech style understanding.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SpeechCraft: A Fine-grained Expressive Speech Dataset with Natural Language Description\",\"authors\":\"Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao Zhou, Xiaoyu Qin, Zhiyong Wu\",\"doi\":\"arxiv-2408.13608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech-language multi-modal learning presents a significant challenge due to\\nthe fine nuanced information inherent in speech styles. Therefore, a\\nlarge-scale dataset providing elaborate comprehension of speech style is\\nurgently needed to facilitate insightful interplay between speech audio and\\nnatural language. However, constructing such datasets presents a major\\ntrade-off between large-scale data collection and high-quality annotation. To\\ntackle this challenge, we propose an automatic speech annotation system for\\nexpressiveness interpretation that annotates in-the-wild speech clips with\\nexpressive and vivid human language descriptions. Initially, speech audios are\\nprocessed by a series of expert classifiers and captioning models to capture\\ndiverse speech characteristics, followed by a fine-tuned LLaMA for customized\\nannotation generation. Unlike previous tag/templet-based annotation frameworks\\nwith limited information and diversity, our system provides in-depth\\nunderstandings of speech style through tailored natural language descriptions,\\nthereby enabling accurate and voluminous data generation for large model\\ntraining. With this system, we create SpeechCraft, a fine-grained bilingual\\nexpressive speech dataset. It is distinguished by highly descriptive natural\\nlanguage style prompts, containing approximately 2,000 hours of audio data and\\nencompassing over two million speech clips. Extensive experiments demonstrate\\nthat the proposed dataset significantly boosts speech-language task performance\\nin stylist speech synthesis and speech style understanding.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于语音风格中固有的细微信息,语音语言多模态学习面临着巨大的挑战。因此,我们迫切需要一个大规模的数据集来提供对语音风格的精细理解,以促进语音音频与自然语言之间的深入互动。然而,构建这样的数据集在大规模数据收集和高质量注释之间存在着巨大的矛盾。为了应对这一挑战,我们提出了一种用于表达力解释的自动语音注释系统,该系统可为野外语音片段注释表达力强且生动的人类语言描述。首先,通过一系列专家分类器和字幕模型对语音音频进行处理,以捕捉语音的各种特征,然后通过微调 LLaMA 生成定制的注释。与以往信息有限、种类繁多的基于标签/模板的注释框架不同,我们的系统通过量身定制的自然语言描述深入理解语音风格,从而为大型模型训练生成准确、大量的数据。有了这个系统,我们创建了 SpeechCraft,一个精细的双语表达语音数据集。该数据集具有高度描述性的自然语言风格提示,包含约 2000 小时的音频数据和 200 多万个语音片段。广泛的实验证明,所提出的数据集能显著提高风格语音合成和语音风格理解方面的语音语言任务性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpeechCraft: A Fine-grained Expressive Speech Dataset with Natural Language Description
Speech-language multi-modal learning presents a significant challenge due to the fine nuanced information inherent in speech styles. Therefore, a large-scale dataset providing elaborate comprehension of speech style is urgently needed to facilitate insightful interplay between speech audio and natural language. However, constructing such datasets presents a major trade-off between large-scale data collection and high-quality annotation. To tackle this challenge, we propose an automatic speech annotation system for expressiveness interpretation that annotates in-the-wild speech clips with expressive and vivid human language descriptions. Initially, speech audios are processed by a series of expert classifiers and captioning models to capture diverse speech characteristics, followed by a fine-tuned LLaMA for customized annotation generation. Unlike previous tag/templet-based annotation frameworks with limited information and diversity, our system provides in-depth understandings of speech style through tailored natural language descriptions, thereby enabling accurate and voluminous data generation for large model training. With this system, we create SpeechCraft, a fine-grained bilingual expressive speech dataset. It is distinguished by highly descriptive natural language style prompts, containing approximately 2,000 hours of audio data and encompassing over two million speech clips. Extensive experiments demonstrate that the proposed dataset significantly boosts speech-language task performance in stylist speech synthesis and speech style understanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1