作为动力学框架的边缘模:一般协变理论中后选择的费用

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY SciPost Physics Pub Date : 2024-08-13 DOI:10.21468/scipostphys.17.2.048
Sylvain Carrozza, Stefan Eccles, Philipp A. Hoehn
{"title":"作为动力学框架的边缘模:一般协变理论中后选择的费用","authors":"Sylvain Carrozza, Stefan Eccles, Philipp A. Hoehn","doi":"10.21468/scipostphys.17.2.048","DOIUrl":null,"url":null,"abstract":"We develop a framework based on the covariant phase space formalism that identifies gravitational edge modes as dynamical reference frames. As such, they enable both the identification of the associated spacetime region and the imposition of boundary conditions in a gauge-invariant manner. While recent proposals considered the finite region in isolation and sought the maximal corner symmetry algebra compatible with that perspective, we here advocate to regard it as a subregion embedded in a global spacetime and study the symmetries consistent with such an embedding. This leads to advantages and differences. It clarifies that the frame, although appearing as \"new\" for the subregion, is built out of the field content of the complement. Given a global variational principle, it also permits us to invoke a systematic post-selection procedure, previously used in gauge theory [J. High Energy Phys. 02, 172 (2022)], to produce a consistent dynamics for a subregion with timelike boundary. As in gauge theory, requiring the subregion presymplectic structure to be conserved by the dynamics leads to an essentially unique prescription and unambiguous Hamiltonian charges. Unlike other proposals, this has the advantage that all (field-independent) spacetime diffeomorphisms acting on the subregion remain gauge and integrable (as in the global theory), and generate a first-class constraint algebra realizing the Lie algebra of spacetime vector fields. By contrast, diffeomorphisms acting on the frame-dressed spacetime, that we call relational spacetime, are in general physical, and those that are parallel to the timelike boundary are integrable. Upon further restriction to relational diffeomorphisms that preserve the boundary conditions (and hence are symmetries), we obtain a subalgebra of conserved corner charges. Physically, they correspond to reorientations of the frame and so to changes in the relation between the subregion and its complement. Finally, we explain how the boundary conditions and conserved presymplectic structure can both be encoded into boundary actions. While our formalism applies to any generally covariant theory, we illustrate it on general relativity, and conclude with a detailed comparison of our findings to earlier works.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge modes as dynamical frames: charges from post-selection in generally covariant theories\",\"authors\":\"Sylvain Carrozza, Stefan Eccles, Philipp A. Hoehn\",\"doi\":\"10.21468/scipostphys.17.2.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a framework based on the covariant phase space formalism that identifies gravitational edge modes as dynamical reference frames. As such, they enable both the identification of the associated spacetime region and the imposition of boundary conditions in a gauge-invariant manner. While recent proposals considered the finite region in isolation and sought the maximal corner symmetry algebra compatible with that perspective, we here advocate to regard it as a subregion embedded in a global spacetime and study the symmetries consistent with such an embedding. This leads to advantages and differences. It clarifies that the frame, although appearing as \\\"new\\\" for the subregion, is built out of the field content of the complement. Given a global variational principle, it also permits us to invoke a systematic post-selection procedure, previously used in gauge theory [J. High Energy Phys. 02, 172 (2022)], to produce a consistent dynamics for a subregion with timelike boundary. As in gauge theory, requiring the subregion presymplectic structure to be conserved by the dynamics leads to an essentially unique prescription and unambiguous Hamiltonian charges. Unlike other proposals, this has the advantage that all (field-independent) spacetime diffeomorphisms acting on the subregion remain gauge and integrable (as in the global theory), and generate a first-class constraint algebra realizing the Lie algebra of spacetime vector fields. By contrast, diffeomorphisms acting on the frame-dressed spacetime, that we call relational spacetime, are in general physical, and those that are parallel to the timelike boundary are integrable. Upon further restriction to relational diffeomorphisms that preserve the boundary conditions (and hence are symmetries), we obtain a subalgebra of conserved corner charges. Physically, they correspond to reorientations of the frame and so to changes in the relation between the subregion and its complement. Finally, we explain how the boundary conditions and conserved presymplectic structure can both be encoded into boundary actions. While our formalism applies to any generally covariant theory, we illustrate it on general relativity, and conclude with a detailed comparison of our findings to earlier works.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.2.048\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.048","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个基于协变相空间形式主义的框架,将引力边缘模式识别为动力学参照系。因此,它们既能识别相关的时空区域,又能以规整不变的方式施加边界条件。最近的提议是孤立地考虑有限区域,并寻求与这一观点相适应的最大角对称代数,而我们在此主张将其视为嵌入全局时空中的一个子区域,并研究与这种嵌入相一致的对称性。这样做既有好处,也有不同之处。它澄清了框架虽然看起来是 "新 "的子区域,但却是从补集的场内容中建立起来的。考虑到全局变分原理,它还允许我们使用以前在规理论中使用过的系统后选择程序[《高能物理杂志》02, 172 (2022)],为具有类时间边界的子区域产生一致的动力学。与规理论中一样,要求子区域的预折射结构在动力学中得到守恒,就会产生一个本质上唯一的处方和明确的哈密顿电荷。与其他方案不同的是,它的优势在于作用于子区域的所有(与场无关的)时空差分变形都保持了可规整性和可积分性(与全局理论中一样),并生成了实现时空矢量场的李代数的一流约束代数。相比之下,作用于框架压缩时空(我们称之为关系时空)的差分变分一般是物理的,那些平行于时间边界的差分变分是可积分的。在进一步限制保留边界条件(因而是对称的)的关系差分后,我们得到了一个守恒角电荷的子代数。在物理上,它们对应于框架的重新定向,因此也对应于子区域与其补集之间关系的变化。最后,我们解释了如何将边界条件和守恒预折射结构编码为边界作用。虽然我们的形式主义适用于任何一般协变理论,但我们还是在广义相对论中对其进行了说明,并在最后将我们的发现与之前的研究成果进行了详细比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edge modes as dynamical frames: charges from post-selection in generally covariant theories
We develop a framework based on the covariant phase space formalism that identifies gravitational edge modes as dynamical reference frames. As such, they enable both the identification of the associated spacetime region and the imposition of boundary conditions in a gauge-invariant manner. While recent proposals considered the finite region in isolation and sought the maximal corner symmetry algebra compatible with that perspective, we here advocate to regard it as a subregion embedded in a global spacetime and study the symmetries consistent with such an embedding. This leads to advantages and differences. It clarifies that the frame, although appearing as "new" for the subregion, is built out of the field content of the complement. Given a global variational principle, it also permits us to invoke a systematic post-selection procedure, previously used in gauge theory [J. High Energy Phys. 02, 172 (2022)], to produce a consistent dynamics for a subregion with timelike boundary. As in gauge theory, requiring the subregion presymplectic structure to be conserved by the dynamics leads to an essentially unique prescription and unambiguous Hamiltonian charges. Unlike other proposals, this has the advantage that all (field-independent) spacetime diffeomorphisms acting on the subregion remain gauge and integrable (as in the global theory), and generate a first-class constraint algebra realizing the Lie algebra of spacetime vector fields. By contrast, diffeomorphisms acting on the frame-dressed spacetime, that we call relational spacetime, are in general physical, and those that are parallel to the timelike boundary are integrable. Upon further restriction to relational diffeomorphisms that preserve the boundary conditions (and hence are symmetries), we obtain a subalgebra of conserved corner charges. Physically, they correspond to reorientations of the frame and so to changes in the relation between the subregion and its complement. Finally, we explain how the boundary conditions and conserved presymplectic structure can both be encoded into boundary actions. While our formalism applies to any generally covariant theory, we illustrate it on general relativity, and conclude with a detailed comparison of our findings to earlier works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
期刊最新文献
Two infinite families of facets of the holographic entropy cone Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory Flux-tunable Kitaev chain in a quantum dot array General quantum-classical dynamics as measurement based feedback Riemannian optimization of photonic quantum circuits in phase and Fock space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1