DreamMesh:联合操纵和纹理三角网格,实现文本到 3D 的生成

Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Zuxuan Wu, Yu-Gang Jiang, Tao Mei
{"title":"DreamMesh:联合操纵和纹理三角网格,实现文本到 3D 的生成","authors":"Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Zuxuan Wu, Yu-Gang Jiang, Tao Mei","doi":"arxiv-2409.07454","DOIUrl":null,"url":null,"abstract":"Learning radiance fields (NeRF) with powerful 2D diffusion models has\ngarnered popularity for text-to-3D generation. Nevertheless, the implicit 3D\nrepresentations of NeRF lack explicit modeling of meshes and textures over\nsurfaces, and such surface-undefined way may suffer from the issues, e.g.,\nnoisy surfaces with ambiguous texture details or cross-view inconsistency. To\nalleviate this, we present DreamMesh, a novel text-to-3D architecture that\npivots on well-defined surfaces (triangle meshes) to generate high-fidelity\nexplicit 3D model. Technically, DreamMesh capitalizes on a distinctive\ncoarse-to-fine scheme. In the coarse stage, the mesh is first deformed by\ntext-guided Jacobians and then DreamMesh textures the mesh with an interlaced\nuse of 2D diffusion models in a tuning free manner from multiple viewpoints. In\nthe fine stage, DreamMesh jointly manipulates the mesh and refines the texture\nmap, leading to high-quality triangle meshes with high-fidelity textured\nmaterials. Extensive experiments demonstrate that DreamMesh significantly\noutperforms state-of-the-art text-to-3D methods in faithfully generating 3D\ncontent with richer textual details and enhanced geometry. Our project page is\navailable at https://dreammesh.github.io.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation\",\"authors\":\"Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Zuxuan Wu, Yu-Gang Jiang, Tao Mei\",\"doi\":\"arxiv-2409.07454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning radiance fields (NeRF) with powerful 2D diffusion models has\\ngarnered popularity for text-to-3D generation. Nevertheless, the implicit 3D\\nrepresentations of NeRF lack explicit modeling of meshes and textures over\\nsurfaces, and such surface-undefined way may suffer from the issues, e.g.,\\nnoisy surfaces with ambiguous texture details or cross-view inconsistency. To\\nalleviate this, we present DreamMesh, a novel text-to-3D architecture that\\npivots on well-defined surfaces (triangle meshes) to generate high-fidelity\\nexplicit 3D model. Technically, DreamMesh capitalizes on a distinctive\\ncoarse-to-fine scheme. In the coarse stage, the mesh is first deformed by\\ntext-guided Jacobians and then DreamMesh textures the mesh with an interlaced\\nuse of 2D diffusion models in a tuning free manner from multiple viewpoints. In\\nthe fine stage, DreamMesh jointly manipulates the mesh and refines the texture\\nmap, leading to high-quality triangle meshes with high-fidelity textured\\nmaterials. Extensive experiments demonstrate that DreamMesh significantly\\noutperforms state-of-the-art text-to-3D methods in faithfully generating 3D\\ncontent with richer textual details and enhanced geometry. Our project page is\\navailable at https://dreammesh.github.io.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学习辐射场(NeRF)具有强大的二维扩散模型,在文本到三维的生成中颇受欢迎。然而,NeRF 的隐式 3D 表示缺乏对网格和表面纹理的显式建模,而且这种未定义表面的方式可能会出现一些问题,例如纹理细节模糊或跨视角不一致的嘈杂表面。为了解决这些问题,我们提出了 DreamMesh,这是一种新颖的文本到三维架构,它以定义明确的曲面(三角形网格)为中心,生成高保真的三维模型。从技术上讲,DreamMesh 采用了一种独特的从粗到细的方案。在粗略阶段,首先通过文本引导的雅各布因子对网格进行变形,然后 DreamMesh 从多个视角以自由调整的方式交错使用二维扩散模型对网格进行纹理处理。在精细阶段,DreamMesh 对网格进行联合处理,并完善纹理贴图,从而生成具有高保真纹理材质的高质量三角形网格。大量实验证明,DreamMesh 在忠实生成具有更丰富文本细节和增强几何形状的 3D 内容方面,明显优于最先进的文本到 3D 方法。我们的项目页面位于 https://dreammesh.github.io。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation
Learning radiance fields (NeRF) with powerful 2D diffusion models has garnered popularity for text-to-3D generation. Nevertheless, the implicit 3D representations of NeRF lack explicit modeling of meshes and textures over surfaces, and such surface-undefined way may suffer from the issues, e.g., noisy surfaces with ambiguous texture details or cross-view inconsistency. To alleviate this, we present DreamMesh, a novel text-to-3D architecture that pivots on well-defined surfaces (triangle meshes) to generate high-fidelity explicit 3D model. Technically, DreamMesh capitalizes on a distinctive coarse-to-fine scheme. In the coarse stage, the mesh is first deformed by text-guided Jacobians and then DreamMesh textures the mesh with an interlaced use of 2D diffusion models in a tuning free manner from multiple viewpoints. In the fine stage, DreamMesh jointly manipulates the mesh and refines the texture map, leading to high-quality triangle meshes with high-fidelity textured materials. Extensive experiments demonstrate that DreamMesh significantly outperforms state-of-the-art text-to-3D methods in faithfully generating 3D content with richer textual details and enhanced geometry. Our project page is available at https://dreammesh.github.io.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1