根据单张图像生成珊瑚模型,用于虚拟现实应用

Jie FuUniversity of the Arts London, Creative Computing Institute, London, United Kingdom, Shun FuBloks Technology Company, Shanghai, China, Mick GriersonUniversity of the Arts London, Creative Computing Institute, London, United Kingdom
{"title":"根据单张图像生成珊瑚模型,用于虚拟现实应用","authors":"Jie FuUniversity of the Arts London, Creative Computing Institute, London, United Kingdom, Shun FuBloks Technology Company, Shanghai, China, Mick GriersonUniversity of the Arts London, Creative Computing Institute, London, United Kingdom","doi":"arxiv-2409.02376","DOIUrl":null,"url":null,"abstract":"With the rapid development of VR technology, the demand for high-quality 3D\nmodels is increasing. Traditional methods struggle with efficiency and quality\nin large-scale customization. This paper introduces a deep-learning framework\nthat generates high-precision 3D coral models from a single image. Using the\nCoral dataset, the framework extracts geometric and texture features, performs\n3D reconstruction, and optimizes design and material blending. Advanced\noptimization and polygon count control ensure shape accuracy, detail retention,\nand flexible output for various complexities, catering to high-quality\nrendering and real-time interaction needs.The project incorporates Explainable\nAI (XAI) to transform AI-generated models into interactive \"artworks,\" best\nviewed in VR and XR. This enhances model interpretability and human-machine\ncollaboration. Real-time feedback in VR interactions displays information like\ncoral species and habitat, enriching user experience. The generated models\nsurpass traditional methods in detail, visual quality, and efficiency. This\nresearch offers an intelligent approach to 3D content creation for VR, lowering\nproduction barriers, and promoting widespread VR applications. Additionally,\nintegrating XAI provides new insights into AI-generated visual content and\nadvances research in 3D vision interpretability.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coral Model Generation from Single Images for Virtual Reality Applications\",\"authors\":\"Jie FuUniversity of the Arts London, Creative Computing Institute, London, United Kingdom, Shun FuBloks Technology Company, Shanghai, China, Mick GriersonUniversity of the Arts London, Creative Computing Institute, London, United Kingdom\",\"doi\":\"arxiv-2409.02376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of VR technology, the demand for high-quality 3D\\nmodels is increasing. Traditional methods struggle with efficiency and quality\\nin large-scale customization. This paper introduces a deep-learning framework\\nthat generates high-precision 3D coral models from a single image. Using the\\nCoral dataset, the framework extracts geometric and texture features, performs\\n3D reconstruction, and optimizes design and material blending. Advanced\\noptimization and polygon count control ensure shape accuracy, detail retention,\\nand flexible output for various complexities, catering to high-quality\\nrendering and real-time interaction needs.The project incorporates Explainable\\nAI (XAI) to transform AI-generated models into interactive \\\"artworks,\\\" best\\nviewed in VR and XR. This enhances model interpretability and human-machine\\ncollaboration. Real-time feedback in VR interactions displays information like\\ncoral species and habitat, enriching user experience. The generated models\\nsurpass traditional methods in detail, visual quality, and efficiency. This\\nresearch offers an intelligent approach to 3D content creation for VR, lowering\\nproduction barriers, and promoting widespread VR applications. Additionally,\\nintegrating XAI provides new insights into AI-generated visual content and\\nadvances research in 3D vision interpretability.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着虚拟现实技术的迅猛发展,对高质量 3D 模型的需求与日俱增。传统方法在大规模定制中难以保证效率和质量。本文介绍了一种深度学习框架,它能从单张图像生成高精度的三维珊瑚模型。该框架使用珊瑚数据集提取几何和纹理特征,执行三维重建,并优化设计和材料混合。先进的优化和多边形数量控制确保了形状的准确性、细节的保留以及各种复杂性的灵活输出,满足了高质量渲染和实时交互的需求。该项目结合了可解释人工智能(XAI),将人工智能生成的模型转化为交互式 "艺术品",在 VR 和 XR 中观看效果最佳。这增强了模型的可解释性和人机协作。VR 交互中的实时反馈显示了珊瑚种类和栖息地等信息,丰富了用户体验。生成的模型在细节、视觉质量和效率方面都超越了传统方法。这项研究为 VR 3D 内容创建提供了一种智能方法,降低了制作门槛,促进了 VR 应用的普及。此外,整合 XAI 还为人工智能生成的视觉内容提供了新的见解,并推动了 3D 视觉可解释性方面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coral Model Generation from Single Images for Virtual Reality Applications
With the rapid development of VR technology, the demand for high-quality 3D models is increasing. Traditional methods struggle with efficiency and quality in large-scale customization. This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image. Using the Coral dataset, the framework extracts geometric and texture features, performs 3D reconstruction, and optimizes design and material blending. Advanced optimization and polygon count control ensure shape accuracy, detail retention, and flexible output for various complexities, catering to high-quality rendering and real-time interaction needs.The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks," best viewed in VR and XR. This enhances model interpretability and human-machine collaboration. Real-time feedback in VR interactions displays information like coral species and habitat, enriching user experience. The generated models surpass traditional methods in detail, visual quality, and efficiency. This research offers an intelligent approach to 3D content creation for VR, lowering production barriers, and promoting widespread VR applications. Additionally, integrating XAI provides new insights into AI-generated visual content and advances research in 3D vision interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1