PoseTalk:基于文字和音频的姿态控制和动作细化,用于一次性生成对话头像

Jun Ling, Yiwen Wang, Han Xue, Rong Xie, Li Song
{"title":"PoseTalk:基于文字和音频的姿态控制和动作细化,用于一次性生成对话头像","authors":"Jun Ling, Yiwen Wang, Han Xue, Rong Xie, Li Song","doi":"arxiv-2409.02657","DOIUrl":null,"url":null,"abstract":"While previous audio-driven talking head generation (THG) methods generate\nhead poses from driving audio, the generated poses or lips cannot match the\naudio well or are not editable. In this study, we propose \\textbf{PoseTalk}, a\nTHG system that can freely generate lip-synchronized talking head videos with\nfree head poses conditioned on text prompts and audio. The core insight of our\nmethod is using head pose to connect visual, linguistic, and audio signals.\nFirst, we propose to generate poses from both audio and text prompts, where the\naudio offers short-term variations and rhythm correspondence of the head\nmovements and the text prompts describe the long-term semantics of head\nmotions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to\ngenerate motion latent from text prompts and audio cues in a pose latent space.\nSecond, we observe a loss-imbalance problem: the loss for the lip region\ncontributes less than 4\\% of the total reconstruction loss caused by both pose\nand lip, making optimization lean towards head movements rather than lip\nshapes. To address this issue, we propose a refinement-based learning strategy\nto synthesize natural talking videos using two cascaded networks, i.e.,\nCoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce\nanimated images in novel poses and the RefineNet focuses on learning finer lip\nmotions by progressively estimating lip motions from low-to-high resolutions,\nyielding improved lip-synchronization performance. Experiments demonstrate our\npose prediction strategy achieves better pose diversity and realness compared\nto text-only or audio-only, and our video generator model outperforms\nstate-of-the-art methods in synthesizing talking videos with natural head\nmotions. Project: https://junleen.github.io/projects/posetalk.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PoseTalk: Text-and-Audio-based Pose Control and Motion Refinement for One-Shot Talking Head Generation\",\"authors\":\"Jun Ling, Yiwen Wang, Han Xue, Rong Xie, Li Song\",\"doi\":\"arxiv-2409.02657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While previous audio-driven talking head generation (THG) methods generate\\nhead poses from driving audio, the generated poses or lips cannot match the\\naudio well or are not editable. In this study, we propose \\\\textbf{PoseTalk}, a\\nTHG system that can freely generate lip-synchronized talking head videos with\\nfree head poses conditioned on text prompts and audio. The core insight of our\\nmethod is using head pose to connect visual, linguistic, and audio signals.\\nFirst, we propose to generate poses from both audio and text prompts, where the\\naudio offers short-term variations and rhythm correspondence of the head\\nmovements and the text prompts describe the long-term semantics of head\\nmotions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to\\ngenerate motion latent from text prompts and audio cues in a pose latent space.\\nSecond, we observe a loss-imbalance problem: the loss for the lip region\\ncontributes less than 4\\\\% of the total reconstruction loss caused by both pose\\nand lip, making optimization lean towards head movements rather than lip\\nshapes. To address this issue, we propose a refinement-based learning strategy\\nto synthesize natural talking videos using two cascaded networks, i.e.,\\nCoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce\\nanimated images in novel poses and the RefineNet focuses on learning finer lip\\nmotions by progressively estimating lip motions from low-to-high resolutions,\\nyielding improved lip-synchronization performance. Experiments demonstrate our\\npose prediction strategy achieves better pose diversity and realness compared\\nto text-only or audio-only, and our video generator model outperforms\\nstate-of-the-art methods in synthesizing talking videos with natural head\\nmotions. Project: https://junleen.github.io/projects/posetalk.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然以前的音频驱动的 "说话头像生成(THG)"方法能从驱动音频生成头像姿势,但生成的姿势或嘴唇不能很好地匹配音频,或者无法编辑。在本研究中,我们提出了一种可以根据文本提示和音频自由生成与嘴唇同步、头部姿势自由的 "对话头 "视频的系统(textbf{PoseTalk})。首先,我们建议根据音频和文本提示生成姿势,其中音频提供头部动作的短期变化和节奏对应,而文本提示则描述头部动作的长期语义。为了实现这一目标,我们设计了一个姿势潜势扩散(PLD)模型,在姿势潜势空间中根据文本提示和音频线索生成运动潜势。其次,我们发现了一个损失不平衡问题:嘴唇区域的损失占姿势和嘴唇造成的总重建损失的比例不到 4%,这使得优化更倾向于头部运动而不是嘴唇形状。为了解决这个问题,我们提出了一种基于细化的学习策略,利用两个级联网络(即 CoarseNet 和 RefineNet)合成自然的说话视频。CoarseNet 通过估算粗略的动作来生成新姿势的动画图像,而 RefineNet 则侧重于学习更精细的唇部动作,从低分辨率到高分辨率逐步估算唇部动作,从而提高唇部同步性能。实验证明,与纯文字或纯音频相比,我们的姿势预测策略实现了更好的姿势多样性和真实性,而且我们的视频生成器模型在合成具有自然头部动作的说话视频方面优于最先进的方法。项目:https://junleen.github.io/projects/posetalk。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PoseTalk: Text-and-Audio-based Pose Control and Motion Refinement for One-Shot Talking Head Generation
While previous audio-driven talking head generation (THG) methods generate head poses from driving audio, the generated poses or lips cannot match the audio well or are not editable. In this study, we propose \textbf{PoseTalk}, a THG system that can freely generate lip-synchronized talking head videos with free head poses conditioned on text prompts and audio. The core insight of our method is using head pose to connect visual, linguistic, and audio signals. First, we propose to generate poses from both audio and text prompts, where the audio offers short-term variations and rhythm correspondence of the head movements and the text prompts describe the long-term semantics of head motions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to generate motion latent from text prompts and audio cues in a pose latent space. Second, we observe a loss-imbalance problem: the loss for the lip region contributes less than 4\% of the total reconstruction loss caused by both pose and lip, making optimization lean towards head movements rather than lip shapes. To address this issue, we propose a refinement-based learning strategy to synthesize natural talking videos using two cascaded networks, i.e., CoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce animated images in novel poses and the RefineNet focuses on learning finer lip motions by progressively estimating lip motions from low-to-high resolutions, yielding improved lip-synchronization performance. Experiments demonstrate our pose prediction strategy achieves better pose diversity and realness compared to text-only or audio-only, and our video generator model outperforms state-of-the-art methods in synthesizing talking videos with natural head motions. Project: https://junleen.github.io/projects/posetalk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1