看或猜:反事实正则化图像字幕制作

Qian Cao, Xu Chen, Ruihua Song, Xiting Wang, Xinting Huang, Yuchen Ren
{"title":"看或猜:反事实正则化图像字幕制作","authors":"Qian Cao, Xu Chen, Ruihua Song, Xiting Wang, Xinting Huang, Yuchen Ren","doi":"arxiv-2408.16809","DOIUrl":null,"url":null,"abstract":"Image captioning, which generates natural language descriptions of the visual\ninformation in an image, is a crucial task in vision-language research.\nPrevious models have typically addressed this task by aligning the generative\ncapabilities of machines with human intelligence through statistical fitting of\nexisting datasets. While effective for normal images, they may struggle to\naccurately describe those where certain parts of the image are obscured or\nedited, unlike humans who excel in such cases. These weaknesses they exhibit,\nincluding hallucinations and limited interpretability, often hinder performance\nin scenarios with shifted association patterns. In this paper, we present a\ngeneric image captioning framework that employs causal inference to make\nexisting models more capable of interventional tasks, and counterfactually\nexplainable. Our approach includes two variants leveraging either total effect\nor natural direct effect. Integrating them into the training process enables\nmodels to handle counterfactual scenarios, increasing their generalizability.\nExtensive experiments on various datasets show that our method effectively\nreduces hallucinations and improves the model's faithfulness to images,\ndemonstrating high portability across both small-scale and large-scale\nimage-to-text models. The code is available at\nhttps://github.com/Aman-4-Real/See-or-Guess.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"See or Guess: Counterfactually Regularized Image Captioning\",\"authors\":\"Qian Cao, Xu Chen, Ruihua Song, Xiting Wang, Xinting Huang, Yuchen Ren\",\"doi\":\"arxiv-2408.16809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning, which generates natural language descriptions of the visual\\ninformation in an image, is a crucial task in vision-language research.\\nPrevious models have typically addressed this task by aligning the generative\\ncapabilities of machines with human intelligence through statistical fitting of\\nexisting datasets. While effective for normal images, they may struggle to\\naccurately describe those where certain parts of the image are obscured or\\nedited, unlike humans who excel in such cases. These weaknesses they exhibit,\\nincluding hallucinations and limited interpretability, often hinder performance\\nin scenarios with shifted association patterns. In this paper, we present a\\ngeneric image captioning framework that employs causal inference to make\\nexisting models more capable of interventional tasks, and counterfactually\\nexplainable. Our approach includes two variants leveraging either total effect\\nor natural direct effect. Integrating them into the training process enables\\nmodels to handle counterfactual scenarios, increasing their generalizability.\\nExtensive experiments on various datasets show that our method effectively\\nreduces hallucinations and improves the model's faithfulness to images,\\ndemonstrating high portability across both small-scale and large-scale\\nimage-to-text models. The code is available at\\nhttps://github.com/Aman-4-Real/See-or-Guess.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为图像中的视觉信息生成自然语言描述的图像标题是视觉语言研究中的一项重要任务。以往的模型通常是通过对现有数据集进行统计拟合,将机器的生成能力与人类智能相匹配,从而完成这项任务。虽然这些模型对正常图像很有效,但在准确描述图像某些部分被遮挡的情况时,它们可能会遇到困难,而人类在这种情况下则表现出色。它们所表现出的这些弱点,包括幻觉和有限的可解释性,往往会妨碍它们在联想模式发生变化的场景中的表现。在本文中,我们提出了一个通用的图像字幕框架,该框架采用因果推理,使现有模型更能胜任干预任务,并可反事实解释。我们的方法包括利用总效应或自然直接效应的两种变体。在各种数据集上进行的大量实验表明,我们的方法有效地减少了幻觉,提高了模型对图像的忠实度,在小规模和大规模图像到文本模型中都表现出很高的可移植性。代码可在https://github.com/Aman-4-Real/See-or-Guess。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
See or Guess: Counterfactually Regularized Image Captioning
Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1