用于参考图像分割的单编码器简单基线

Seonghoon Yu, Ilchae Jung, Byeongju Han, Taeoh Kim, Yunho Kim, Dongyoon Wee, Jeany Son
{"title":"用于参考图像分割的单编码器简单基线","authors":"Seonghoon Yu, Ilchae Jung, Byeongju Han, Taeoh Kim, Yunho Kim, Dongyoon Wee, Jeany Son","doi":"arxiv-2408.15521","DOIUrl":null,"url":null,"abstract":"Referring image segmentation (RIS) requires dense vision-language\ninteractions between visual pixels and textual words to segment objects based\non a given description. However, commonly adapted dual-encoders in RIS, e.g.,\nSwin transformer and BERT (uni-modal encoders) or CLIP (a multi-modal\ndual-encoder), lack dense multi-modal interactions during pre-training, leading\nto a gap with a pixel-level RIS task. To bridge this gap, existing RIS methods\noften rely on multi-modal fusion modules that interact two encoders, but this\napproach leads to high computational costs. In this paper, we present a novel\nRIS method with a single-encoder, i.e., BEiT-3, maximizing the potential of\nshared self-attention across all framework components. This enables seamless\ninteractions of two modalities from input to final prediction, producing\ngranularly aligned multi-modal features. Furthermore, we propose lightweight\nyet effective decoder modules, a Shared FPN and a Shared Mask Decoder, which\ncontribute to the high efficiency of our model. Our simple baseline with a\nsingle encoder achieves outstanding performances on the RIS benchmark datasets\nwhile maintaining computational efficiency, compared to the most recent SoTA\nmethods based on dual-encoders.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Baseline with Single-encoder for Referring Image Segmentation\",\"authors\":\"Seonghoon Yu, Ilchae Jung, Byeongju Han, Taeoh Kim, Yunho Kim, Dongyoon Wee, Jeany Son\",\"doi\":\"arxiv-2408.15521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring image segmentation (RIS) requires dense vision-language\\ninteractions between visual pixels and textual words to segment objects based\\non a given description. However, commonly adapted dual-encoders in RIS, e.g.,\\nSwin transformer and BERT (uni-modal encoders) or CLIP (a multi-modal\\ndual-encoder), lack dense multi-modal interactions during pre-training, leading\\nto a gap with a pixel-level RIS task. To bridge this gap, existing RIS methods\\noften rely on multi-modal fusion modules that interact two encoders, but this\\napproach leads to high computational costs. In this paper, we present a novel\\nRIS method with a single-encoder, i.e., BEiT-3, maximizing the potential of\\nshared self-attention across all framework components. This enables seamless\\ninteractions of two modalities from input to final prediction, producing\\ngranularly aligned multi-modal features. Furthermore, we propose lightweight\\nyet effective decoder modules, a Shared FPN and a Shared Mask Decoder, which\\ncontribute to the high efficiency of our model. Our simple baseline with a\\nsingle encoder achieves outstanding performances on the RIS benchmark datasets\\nwhile maintaining computational efficiency, compared to the most recent SoTA\\nmethods based on dual-encoders.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参考图像分割(RIS)需要视觉像素和文字之间密集的视觉语言交互,以便根据给定的描述分割对象。然而,RIS 中常用的双编码器,如 Swin transformer 和 BERT(单模态编码器)或 CLIP(多模态双编码器),在预训练时缺乏密集的多模态交互,导致与像素级 RIS 任务之间存在差距。为了弥补这一差距,现有的 RIS 方法通常依赖于两个编码器交互的多模态融合模块,但这种方法会导致很高的计算成本。在本文中,我们提出了一种使用单编码器(即 BEiT-3)的新型 RIS 方法,最大限度地发挥了所有框架组件共享自我关注的潜力。这就实现了从输入到最终预测的两种模态的无缝交互,产生粒度一致的多模态特征。此外,我们还提出了轻量级但有效的解码器模块,即共享 FPN 和共享掩码解码器,这有助于提高我们模型的效率。与基于双编码器的最新 SoTA 方法相比,我们使用单编码器的简单基线在 RIS 基准数据集上实现了出色的性能,同时保持了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Simple Baseline with Single-encoder for Referring Image Segmentation
Referring image segmentation (RIS) requires dense vision-language interactions between visual pixels and textual words to segment objects based on a given description. However, commonly adapted dual-encoders in RIS, e.g., Swin transformer and BERT (uni-modal encoders) or CLIP (a multi-modal dual-encoder), lack dense multi-modal interactions during pre-training, leading to a gap with a pixel-level RIS task. To bridge this gap, existing RIS methods often rely on multi-modal fusion modules that interact two encoders, but this approach leads to high computational costs. In this paper, we present a novel RIS method with a single-encoder, i.e., BEiT-3, maximizing the potential of shared self-attention across all framework components. This enables seamless interactions of two modalities from input to final prediction, producing granularly aligned multi-modal features. Furthermore, we propose lightweight yet effective decoder modules, a Shared FPN and a Shared Mask Decoder, which contribute to the high efficiency of our model. Our simple baseline with a single encoder achieves outstanding performances on the RIS benchmark datasets while maintaining computational efficiency, compared to the most recent SoTA methods based on dual-encoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1