Nasser Zouli, R. M. Abdel Hameed, Ahmed Abutaleb, Ibrahim M. Maafa, Ayman Yousef
{"title":"不同温度下在石墨上煅烧氧化镍纳米结构,实现乙二醇在碱性电解液中的高效电氧化","authors":"Nasser Zouli, R. M. Abdel Hameed, Ahmed Abutaleb, Ibrahim M. Maafa, Ayman Yousef","doi":"10.1002/aoc.7729","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fabricating a highly active and stable nanocatalyst material displays a great concern when constructing a commercially viable ethylene glycol (EG) fuel cell. Herein, nickel oxide nanostructures were grown onto graphite (NO/T) using coprecipitation and calcination protocol at different temperatures. Techniques for XRD, TEM, SEM, and EDX investigations were used to look into the produced crystal planes, shape, and elemental mapping of synthesized nickel oxide nanoparticles. Different NO/T nanocatalyst electroactivities were examined in order to oxidize EG molecules in basic electrolyte. The surface area values of calcined nanostructures at 200°C and 300°C were much higher than those measured at NO/T-400 by 7.62 and 3.71 folds to explain their outstanding performance. Some kinetic information for varied NO/T nanocatalysts was derived including the electron transfer coefficient, rate constant, and surface coverage values. Electron transfer rate constants of 0.1946, 0.3734, 0.0113, and 0.0303 s<sup>−1</sup> were calculated at NO/T-200, NO/T-300, NO/T-400, and NO/T-500, respectively. Increased oxidation current densities could be achieved when NO/T nanomaterials were subjected to lowered calcination temperatures. NO/T-200 and NO/T-300 nanocatalysts also displayed decreased E<sub>onset</sub> for alcohol oxidation process by 20 and 41 mV in relation to that at NO/T-400. Moreover, chronoamperometric experiments revealed the prevalence of the stable behavior during EG oxidation at these nanostructures, especially for calcined ones at 200°C and 300°C. Much reduced poisoning rates were measured at NO/T-200 (0.171 s<sup>−1</sup>) and NO/T-300 (0.067 s<sup>−1</sup>) when contrasted to that at NO/T-500 (0.727 s<sup>−1</sup>). Increasing the alcohol and supporting electrolyte concentrations was beneficial in improving the charge transfer characteristics of NO/T nanocatalysts as demonstrated by EIS measurements. This study supports the promising activity of NiO nanoparticles onto graphite as anode materials for direct alcohol fuel cells.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcined Nickel Oxide Nanostructures at Different Temperatures Onto Graphite for Efficient Electro-Oxidation of Ethylene Glycol in Basic Electrolyte\",\"authors\":\"Nasser Zouli, R. M. Abdel Hameed, Ahmed Abutaleb, Ibrahim M. Maafa, Ayman Yousef\",\"doi\":\"10.1002/aoc.7729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Fabricating a highly active and stable nanocatalyst material displays a great concern when constructing a commercially viable ethylene glycol (EG) fuel cell. Herein, nickel oxide nanostructures were grown onto graphite (NO/T) using coprecipitation and calcination protocol at different temperatures. Techniques for XRD, TEM, SEM, and EDX investigations were used to look into the produced crystal planes, shape, and elemental mapping of synthesized nickel oxide nanoparticles. Different NO/T nanocatalyst electroactivities were examined in order to oxidize EG molecules in basic electrolyte. The surface area values of calcined nanostructures at 200°C and 300°C were much higher than those measured at NO/T-400 by 7.62 and 3.71 folds to explain their outstanding performance. Some kinetic information for varied NO/T nanocatalysts was derived including the electron transfer coefficient, rate constant, and surface coverage values. Electron transfer rate constants of 0.1946, 0.3734, 0.0113, and 0.0303 s<sup>−1</sup> were calculated at NO/T-200, NO/T-300, NO/T-400, and NO/T-500, respectively. Increased oxidation current densities could be achieved when NO/T nanomaterials were subjected to lowered calcination temperatures. NO/T-200 and NO/T-300 nanocatalysts also displayed decreased E<sub>onset</sub> for alcohol oxidation process by 20 and 41 mV in relation to that at NO/T-400. Moreover, chronoamperometric experiments revealed the prevalence of the stable behavior during EG oxidation at these nanostructures, especially for calcined ones at 200°C and 300°C. Much reduced poisoning rates were measured at NO/T-200 (0.171 s<sup>−1</sup>) and NO/T-300 (0.067 s<sup>−1</sup>) when contrasted to that at NO/T-500 (0.727 s<sup>−1</sup>). Increasing the alcohol and supporting electrolyte concentrations was beneficial in improving the charge transfer characteristics of NO/T nanocatalysts as demonstrated by EIS measurements. This study supports the promising activity of NiO nanoparticles onto graphite as anode materials for direct alcohol fuel cells.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7729\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7729","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Calcined Nickel Oxide Nanostructures at Different Temperatures Onto Graphite for Efficient Electro-Oxidation of Ethylene Glycol in Basic Electrolyte
Fabricating a highly active and stable nanocatalyst material displays a great concern when constructing a commercially viable ethylene glycol (EG) fuel cell. Herein, nickel oxide nanostructures were grown onto graphite (NO/T) using coprecipitation and calcination protocol at different temperatures. Techniques for XRD, TEM, SEM, and EDX investigations were used to look into the produced crystal planes, shape, and elemental mapping of synthesized nickel oxide nanoparticles. Different NO/T nanocatalyst electroactivities were examined in order to oxidize EG molecules in basic electrolyte. The surface area values of calcined nanostructures at 200°C and 300°C were much higher than those measured at NO/T-400 by 7.62 and 3.71 folds to explain their outstanding performance. Some kinetic information for varied NO/T nanocatalysts was derived including the electron transfer coefficient, rate constant, and surface coverage values. Electron transfer rate constants of 0.1946, 0.3734, 0.0113, and 0.0303 s−1 were calculated at NO/T-200, NO/T-300, NO/T-400, and NO/T-500, respectively. Increased oxidation current densities could be achieved when NO/T nanomaterials were subjected to lowered calcination temperatures. NO/T-200 and NO/T-300 nanocatalysts also displayed decreased Eonset for alcohol oxidation process by 20 and 41 mV in relation to that at NO/T-400. Moreover, chronoamperometric experiments revealed the prevalence of the stable behavior during EG oxidation at these nanostructures, especially for calcined ones at 200°C and 300°C. Much reduced poisoning rates were measured at NO/T-200 (0.171 s−1) and NO/T-300 (0.067 s−1) when contrasted to that at NO/T-500 (0.727 s−1). Increasing the alcohol and supporting electrolyte concentrations was beneficial in improving the charge transfer characteristics of NO/T nanocatalysts as demonstrated by EIS measurements. This study supports the promising activity of NiO nanoparticles onto graphite as anode materials for direct alcohol fuel cells.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.