Yazdan Akbari Birgani, Ali Ghorbanpour Arani, Zahra Khoddami Maraghi
{"title":"克尔地基上五层层压纳米复合材料的非局部屈曲分析:精炼之字形理论方法","authors":"Yazdan Akbari Birgani, Ali Ghorbanpour Arani, Zahra Khoddami Maraghi","doi":"10.1177/10996362241280020","DOIUrl":null,"url":null,"abstract":"In this paper, the buckling analysis of a five-layer laminated nanocomposite resting on a Kerr foundation is presented. In order to describe the non-continuous behavior of composite plate through its thickness, the displacement field is determined using the Refined Zigzag Theory (RZT). Additionally, the constitutive relations of piezo electromagnetic isotropic materials, orthotropic composites, and Functionally Graded Porous Materials (FGPMs) are presented. With respect to Bi- and Uniaxial loading in the nanoplate, the Hamilton’s principle is utilized to derive the equation of motion of this nanoplate. To study the small-scale effect in nanoplates, both Nonlocal Eringen Theory and Nonlocal Strain Gradient Theory (NSGT) are employed to account for nonlocal effects. Finally, the coupled equations of motion are solved using the Differential Quadrature Method (DQM). This paper introduces the newly used Kerr foundation and its effect on the buckling analysis. It also investigates the influence of plate dimensions, piezo electromagnetic terms, boundary conditions, and loading on the dimensionless critical buckling load.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal buckling analysis of five-layer laminated nanocomposites on kerr foundation: A refined zigzag theory approach\",\"authors\":\"Yazdan Akbari Birgani, Ali Ghorbanpour Arani, Zahra Khoddami Maraghi\",\"doi\":\"10.1177/10996362241280020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the buckling analysis of a five-layer laminated nanocomposite resting on a Kerr foundation is presented. In order to describe the non-continuous behavior of composite plate through its thickness, the displacement field is determined using the Refined Zigzag Theory (RZT). Additionally, the constitutive relations of piezo electromagnetic isotropic materials, orthotropic composites, and Functionally Graded Porous Materials (FGPMs) are presented. With respect to Bi- and Uniaxial loading in the nanoplate, the Hamilton’s principle is utilized to derive the equation of motion of this nanoplate. To study the small-scale effect in nanoplates, both Nonlocal Eringen Theory and Nonlocal Strain Gradient Theory (NSGT) are employed to account for nonlocal effects. Finally, the coupled equations of motion are solved using the Differential Quadrature Method (DQM). This paper introduces the newly used Kerr foundation and its effect on the buckling analysis. It also investigates the influence of plate dimensions, piezo electromagnetic terms, boundary conditions, and loading on the dimensionless critical buckling load.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362241280020\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241280020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nonlocal buckling analysis of five-layer laminated nanocomposites on kerr foundation: A refined zigzag theory approach
In this paper, the buckling analysis of a five-layer laminated nanocomposite resting on a Kerr foundation is presented. In order to describe the non-continuous behavior of composite plate through its thickness, the displacement field is determined using the Refined Zigzag Theory (RZT). Additionally, the constitutive relations of piezo electromagnetic isotropic materials, orthotropic composites, and Functionally Graded Porous Materials (FGPMs) are presented. With respect to Bi- and Uniaxial loading in the nanoplate, the Hamilton’s principle is utilized to derive the equation of motion of this nanoplate. To study the small-scale effect in nanoplates, both Nonlocal Eringen Theory and Nonlocal Strain Gradient Theory (NSGT) are employed to account for nonlocal effects. Finally, the coupled equations of motion are solved using the Differential Quadrature Method (DQM). This paper introduces the newly used Kerr foundation and its effect on the buckling analysis. It also investigates the influence of plate dimensions, piezo electromagnetic terms, boundary conditions, and loading on the dimensionless critical buckling load.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).