选择性激光熔融法生产的简单立方晶格结构的残余应力研究

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2024-08-28 DOI:10.1177/10996362241278214
Hongjian Zhao, Binghua Yang, Rui Zhang, Yuxuan Tian, Changsheng Liu, Yu Zhan
{"title":"选择性激光熔融法生产的简单立方晶格结构的残余应力研究","authors":"Hongjian Zhao, Binghua Yang, Rui Zhang, Yuxuan Tian, Changsheng Liu, Yu Zhan","doi":"10.1177/10996362241278214","DOIUrl":null,"url":null,"abstract":"Lattice structures become the focus for scholars to research due to its unique lightweight, high impact resistance and ideal noise reduction. Selective laser melting has become a very effective and convenient method for preparing lattice structures of excellent quality. However, it is imperative to acknowledge that rapid heating and cooling processes inherent to the method can generate excessive residual stresses within the lattice structures, thereby significantly compromising their mechanical properties. To address this issue, the present study seeks to elucidate the patterns and characteristics of distribution of residual stresses and deformations within simple cubic lattice structures, employing a combination of experimental techniques and finite element analysis. The fabrication of these simple cubic lattice structures is accomplished through selective laser melting. The investigation encompasses both two methods, involving X-ray measurements at discrete points on the structure, and finite element simulations to depict the overall stress distribution. The results show that the residual stress and deformation are more likely concentrated on the initial surface to be processed, and residual stress on the substrates is bigger than that on bars. Specifically, the biggest stress concentrates on the Z-bars, up to 1393 MPa. However, in terms of the overall state of stress distribution in the structure, the residual stress on the substrate is slightly higher than that on the lattice structure.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the residual stress of simple cubic lattice structure produced by selective laser melting\",\"authors\":\"Hongjian Zhao, Binghua Yang, Rui Zhang, Yuxuan Tian, Changsheng Liu, Yu Zhan\",\"doi\":\"10.1177/10996362241278214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice structures become the focus for scholars to research due to its unique lightweight, high impact resistance and ideal noise reduction. Selective laser melting has become a very effective and convenient method for preparing lattice structures of excellent quality. However, it is imperative to acknowledge that rapid heating and cooling processes inherent to the method can generate excessive residual stresses within the lattice structures, thereby significantly compromising their mechanical properties. To address this issue, the present study seeks to elucidate the patterns and characteristics of distribution of residual stresses and deformations within simple cubic lattice structures, employing a combination of experimental techniques and finite element analysis. The fabrication of these simple cubic lattice structures is accomplished through selective laser melting. The investigation encompasses both two methods, involving X-ray measurements at discrete points on the structure, and finite element simulations to depict the overall stress distribution. The results show that the residual stress and deformation are more likely concentrated on the initial surface to be processed, and residual stress on the substrates is bigger than that on bars. Specifically, the biggest stress concentrates on the Z-bars, up to 1393 MPa. However, in terms of the overall state of stress distribution in the structure, the residual stress on the substrate is slightly higher than that on the lattice structure.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362241278214\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241278214","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

晶格结构因其独特的轻质、高抗冲击性和理想的降噪效果而成为学者们研究的重点。选择性激光熔融已成为制备优质晶格结构的一种非常有效和便捷的方法。然而,必须承认的是,该方法固有的快速加热和冷却过程会在晶格结构中产生过大的残余应力,从而严重影响其机械性能。为解决这一问题,本研究采用实验技术和有限元分析相结合的方法,试图阐明简单立方晶格结构内残余应力和变形的分布模式和特征。这些简单立方晶格结构的制造是通过选择性激光熔化完成的。研究包括两种方法,一种是对结构上的离散点进行 X 射线测量,另一种是进行有限元模拟以描述整体应力分布。结果表明,残余应力和变形更有可能集中在待加工的初始表面上,而且基材上的残余应力要大于棒材上的残余应力。具体来说,最大的应力集中在 Z 形棒材上,高达 1393 兆帕。不过,从结构应力分布的整体状态来看,基体上的残余应力略高于晶格结构上的残余应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the residual stress of simple cubic lattice structure produced by selective laser melting
Lattice structures become the focus for scholars to research due to its unique lightweight, high impact resistance and ideal noise reduction. Selective laser melting has become a very effective and convenient method for preparing lattice structures of excellent quality. However, it is imperative to acknowledge that rapid heating and cooling processes inherent to the method can generate excessive residual stresses within the lattice structures, thereby significantly compromising their mechanical properties. To address this issue, the present study seeks to elucidate the patterns and characteristics of distribution of residual stresses and deformations within simple cubic lattice structures, employing a combination of experimental techniques and finite element analysis. The fabrication of these simple cubic lattice structures is accomplished through selective laser melting. The investigation encompasses both two methods, involving X-ray measurements at discrete points on the structure, and finite element simulations to depict the overall stress distribution. The results show that the residual stress and deformation are more likely concentrated on the initial surface to be processed, and residual stress on the substrates is bigger than that on bars. Specifically, the biggest stress concentrates on the Z-bars, up to 1393 MPa. However, in terms of the overall state of stress distribution in the structure, the residual stress on the substrate is slightly higher than that on the lattice structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1