Hsiao-Tien Tsai, Jichong Wu, Puneet Gupta, Eric R. Heinz, Amir Jafari
{"title":"利用深度神经网络和合成数据预测冠状动脉旁路移植患者的输血量","authors":"Hsiao-Tien Tsai, Jichong Wu, Puneet Gupta, Eric R. Heinz, Amir Jafari","doi":"10.1007/s00521-024-10309-9","DOIUrl":null,"url":null,"abstract":"<p>Coronary Artery Bypass Graft (CABG) is a common cardiac surgery, but it continues to have many associated risks, including the need for blood transfusions. Previous research has shown that blood transfusion during CABG surgery is associated with an increased risk for infection and mortality. The current study aims to use modern techniques, such as deep neural networks and data synthesis, to develop models that can best predict the need for blood transfusion among CABG patients. Results show that neural networks with synthetic data generated by DataSynthesizer have the best performance. Implications of results and future directions are discussed.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting blood transfusions for coronary artery bypass graft patients using deep neural networks and synthetic data\",\"authors\":\"Hsiao-Tien Tsai, Jichong Wu, Puneet Gupta, Eric R. Heinz, Amir Jafari\",\"doi\":\"10.1007/s00521-024-10309-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coronary Artery Bypass Graft (CABG) is a common cardiac surgery, but it continues to have many associated risks, including the need for blood transfusions. Previous research has shown that blood transfusion during CABG surgery is associated with an increased risk for infection and mortality. The current study aims to use modern techniques, such as deep neural networks and data synthesis, to develop models that can best predict the need for blood transfusion among CABG patients. Results show that neural networks with synthetic data generated by DataSynthesizer have the best performance. Implications of results and future directions are discussed.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10309-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10309-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting blood transfusions for coronary artery bypass graft patients using deep neural networks and synthetic data
Coronary Artery Bypass Graft (CABG) is a common cardiac surgery, but it continues to have many associated risks, including the need for blood transfusions. Previous research has shown that blood transfusion during CABG surgery is associated with an increased risk for infection and mortality. The current study aims to use modern techniques, such as deep neural networks and data synthesis, to develop models that can best predict the need for blood transfusion among CABG patients. Results show that neural networks with synthetic data generated by DataSynthesizer have the best performance. Implications of results and future directions are discussed.