Dana C. Pittman Ratterree, Sapna Chitlapilly Dass, Martial L. Ndeffo-Mbah
{"title":"商用猪群中的流感传播机制模型:系统回顾","authors":"Dana C. Pittman Ratterree, Sapna Chitlapilly Dass, Martial L. Ndeffo-Mbah","doi":"10.3390/pathogens13090746","DOIUrl":null,"url":null,"abstract":"Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine–avian (n = 3), and swine–human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Models of Influenza Transmission in Commercial Swine Populations: A Systematic Review\",\"authors\":\"Dana C. Pittman Ratterree, Sapna Chitlapilly Dass, Martial L. Ndeffo-Mbah\",\"doi\":\"10.3390/pathogens13090746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine–avian (n = 3), and swine–human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens13090746\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens13090746","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Mechanistic Models of Influenza Transmission in Commercial Swine Populations: A Systematic Review
Influenza in commercial swine populations leads to reduced gain in fattening pigs and reproductive issues in sows. This literature review aims to analyze the contributions of mathematical modeling in understanding influenza transmission and control among domestic swine. Twenty-two full-text research articles from seven databases were reviewed, categorized into swine-only (n = 13), swine–avian (n = 3), and swine–human models (n = 6). Strains of influenza models were limited to H1N1 (n = 7) and H3N2 (n = 1), with many studies generalizing the disease as influenza A. Half of the studies (n = 14) considered at least one control strategy, with vaccination being the primary investigated strategy. Vaccination was shown to reduce disease prevalence in single animal cohorts. With a continuous flow of new susceptible animals, such as in farrow-to-finish farms, it was shown that influenza became endemic despite vaccination strategies such as mass or batch-to-batch vaccination. Human vaccination was shown to be effective at mitigating human-to-human influenza transmission and to reduce spillover events from pigs. Current control strategies cannot stop influenza in livestock or prevent viral reassortment in swine, so mechanistic models are crucial for developing and testing new biosecurity measures to prevent future swine pandemics.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.