Khurram Hameed, Nauman Ahmed, Wasim Khan, Muneeb Ahmed, Salma Zainab Farooq, Muhammad Rashid Ramzan, Muhammad Ramzan
{"title":"使用生物授粉算法利用双层嵌套阵列的二阶统计进行远场源 DOA 估算","authors":"Khurram Hameed, Nauman Ahmed, Wasim Khan, Muneeb Ahmed, Salma Zainab Farooq, Muhammad Rashid Ramzan, Muhammad Ramzan","doi":"10.1007/s11277-024-11512-6","DOIUrl":null,"url":null,"abstract":"<p>The immense degree of freedom (DOF), high array aperture, non-uniform linear arrays, and reduced mutual coupling have developed interest in the estimations of the direction of arrival (DOA). Due to complex previous structures, this paper investigates the bi-level sparse linear nested array (SNA) concepts to discuss element spacing and different ranges on uniform DOF. Then features of flower pollination algorithm is applied to the proposed two-level SNA to generalize and enhance the proposed structure further. In order to boost DOF, it is also investigated local and global minima of highly non-linear functions. The proposed technique for quantifying the DOA is reviewed analytically using evaluation parameters like cumulative distributive function, accuracy, root mean square error, and robustness against noise and snapshots. The simulation findings prove its validation with the analytical model and target the accuracy with fewer separations and the minimum number of physical sensors in relation to particle swarm optimization. Moreover, the strength of the proposed study further validated by comparing with Cramer Rao Bound for minimum variance which shows that the FPA outperforms.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOA Estimation of Far-Field Sources by Exploiting Second Order Statistics of Bi-level Nested Arrays Using Biological Flower Pollination Algorithm\",\"authors\":\"Khurram Hameed, Nauman Ahmed, Wasim Khan, Muneeb Ahmed, Salma Zainab Farooq, Muhammad Rashid Ramzan, Muhammad Ramzan\",\"doi\":\"10.1007/s11277-024-11512-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The immense degree of freedom (DOF), high array aperture, non-uniform linear arrays, and reduced mutual coupling have developed interest in the estimations of the direction of arrival (DOA). Due to complex previous structures, this paper investigates the bi-level sparse linear nested array (SNA) concepts to discuss element spacing and different ranges on uniform DOF. Then features of flower pollination algorithm is applied to the proposed two-level SNA to generalize and enhance the proposed structure further. In order to boost DOF, it is also investigated local and global minima of highly non-linear functions. The proposed technique for quantifying the DOA is reviewed analytically using evaluation parameters like cumulative distributive function, accuracy, root mean square error, and robustness against noise and snapshots. The simulation findings prove its validation with the analytical model and target the accuracy with fewer separations and the minimum number of physical sensors in relation to particle swarm optimization. Moreover, the strength of the proposed study further validated by comparing with Cramer Rao Bound for minimum variance which shows that the FPA outperforms.</p>\",\"PeriodicalId\":23827,\"journal\":{\"name\":\"Wireless Personal Communications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Personal Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11277-024-11512-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11512-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
DOA Estimation of Far-Field Sources by Exploiting Second Order Statistics of Bi-level Nested Arrays Using Biological Flower Pollination Algorithm
The immense degree of freedom (DOF), high array aperture, non-uniform linear arrays, and reduced mutual coupling have developed interest in the estimations of the direction of arrival (DOA). Due to complex previous structures, this paper investigates the bi-level sparse linear nested array (SNA) concepts to discuss element spacing and different ranges on uniform DOF. Then features of flower pollination algorithm is applied to the proposed two-level SNA to generalize and enhance the proposed structure further. In order to boost DOF, it is also investigated local and global minima of highly non-linear functions. The proposed technique for quantifying the DOA is reviewed analytically using evaluation parameters like cumulative distributive function, accuracy, root mean square error, and robustness against noise and snapshots. The simulation findings prove its validation with the analytical model and target the accuracy with fewer separations and the minimum number of physical sensors in relation to particle swarm optimization. Moreover, the strength of the proposed study further validated by comparing with Cramer Rao Bound for minimum variance which shows that the FPA outperforms.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.