{"title":"关于使用 LEO-GEO 混合模型优化数据流量性能","authors":"Hany Ali, Mohamed Abouelatta, Khaled Y. Youssef","doi":"10.1007/s11277-024-11527-z","DOIUrl":null,"url":null,"abstract":"<p>As the world is moving towards the Internet of Things (IoT), more data rate is required with wider coverage and small delay. While the 5G supports the needed increased data rate, it suffers from a decreased coverage per tower. In contrast, the low population areas such as deserts, oceans, forests, and mountains contain most of the world's transportation such as highways, ships, and planes as well as large areas of agricultural lands that are all not supported by 5G. Consequently, LEO satellite constellations have been introduced to cover the earth's surface with a high-speed data rate. Each LEO satellite constellation requires 4000 + satellites and at least one ground base station (BS) for control, tracking, telemetry, and remote sensing functions. However, to support the needed downlink high-speed data rate demand, the LEO satellite constellation must add many BSs to increase the uplink data rate. As a result, the GEO communication satellites face great competitors in their market. This paper introduces the hybrid LEO-GEO satellite communication system to change this competition into cooperation that benefits both systems. In the hybrid LEO-GEO satellite communication system, this paper proposes maximizing the downlink utilization of both LEO and GEO satellites by the traffic-aware Artificial Expectation Detection (AED) technique. In such a technique, the trending multicast data choose the GEO link while the unicast data and control data choose the LEO link to maximize the downlink utilization efficiency. Our results show that using AED is power efficient and delay efficient while increasing the data rate by (100)x to (100k)x or decreasing the needed number of LEO BSs.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Use of LEO-GEO Hybrid Model for Optimized Data Traffic Performance\",\"authors\":\"Hany Ali, Mohamed Abouelatta, Khaled Y. Youssef\",\"doi\":\"10.1007/s11277-024-11527-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the world is moving towards the Internet of Things (IoT), more data rate is required with wider coverage and small delay. While the 5G supports the needed increased data rate, it suffers from a decreased coverage per tower. In contrast, the low population areas such as deserts, oceans, forests, and mountains contain most of the world's transportation such as highways, ships, and planes as well as large areas of agricultural lands that are all not supported by 5G. Consequently, LEO satellite constellations have been introduced to cover the earth's surface with a high-speed data rate. Each LEO satellite constellation requires 4000 + satellites and at least one ground base station (BS) for control, tracking, telemetry, and remote sensing functions. However, to support the needed downlink high-speed data rate demand, the LEO satellite constellation must add many BSs to increase the uplink data rate. As a result, the GEO communication satellites face great competitors in their market. This paper introduces the hybrid LEO-GEO satellite communication system to change this competition into cooperation that benefits both systems. In the hybrid LEO-GEO satellite communication system, this paper proposes maximizing the downlink utilization of both LEO and GEO satellites by the traffic-aware Artificial Expectation Detection (AED) technique. In such a technique, the trending multicast data choose the GEO link while the unicast data and control data choose the LEO link to maximize the downlink utilization efficiency. Our results show that using AED is power efficient and delay efficient while increasing the data rate by (100)x to (100k)x or decreasing the needed number of LEO BSs.</p>\",\"PeriodicalId\":23827,\"journal\":{\"name\":\"Wireless Personal Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Personal Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11277-024-11527-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11527-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
On Use of LEO-GEO Hybrid Model for Optimized Data Traffic Performance
As the world is moving towards the Internet of Things (IoT), more data rate is required with wider coverage and small delay. While the 5G supports the needed increased data rate, it suffers from a decreased coverage per tower. In contrast, the low population areas such as deserts, oceans, forests, and mountains contain most of the world's transportation such as highways, ships, and planes as well as large areas of agricultural lands that are all not supported by 5G. Consequently, LEO satellite constellations have been introduced to cover the earth's surface with a high-speed data rate. Each LEO satellite constellation requires 4000 + satellites and at least one ground base station (BS) for control, tracking, telemetry, and remote sensing functions. However, to support the needed downlink high-speed data rate demand, the LEO satellite constellation must add many BSs to increase the uplink data rate. As a result, the GEO communication satellites face great competitors in their market. This paper introduces the hybrid LEO-GEO satellite communication system to change this competition into cooperation that benefits both systems. In the hybrid LEO-GEO satellite communication system, this paper proposes maximizing the downlink utilization of both LEO and GEO satellites by the traffic-aware Artificial Expectation Detection (AED) technique. In such a technique, the trending multicast data choose the GEO link while the unicast data and control data choose the LEO link to maximize the downlink utilization efficiency. Our results show that using AED is power efficient and delay efficient while increasing the data rate by (100)x to (100k)x or decreasing the needed number of LEO BSs.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.