日周期性斜坡风的分析模型。第 2 部分:解决方案

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-08-21 DOI:10.1002/qj.4787
Mattia Marchio, Sofia Farina, Dino Zardi
{"title":"日周期性斜坡风的分析模型。第 2 部分:解决方案","authors":"Mattia Marchio, Sofia Farina, Dino Zardi","doi":"10.1002/qj.4787","DOIUrl":null,"url":null,"abstract":"This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical model for daily‐periodic slope winds. Part 2: Solutions\",\"authors\":\"Mattia Marchio, Sofia Farina, Dino Zardi\",\"doi\":\"10.1002/qj.4787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4787\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4787","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个分析模型,用于分析日周期性地表能量预算所产生的、以热力驱动的斜坡风为特征的斜坡法向势能温度和风速廓线的日周期。该模型扩展了 Zardi 和 Serafin 最初针对纯正弦表面强迫温度提出的解决方案。为了解释白天和夜间相位的不对称特征,推导出了一个完整的傅立叶级数展开,其系数和相位由本研究第一部分所述的日周期辐射模型驱动的地表能量预算规定。该模型适用于任何坡角()和朝向、任何纬度和海拔(最高达 2500 米)以及所有季节。尽管存在一些固有的局限性,其中最显著的是缺少潮湿过程和潜热通量,但该模型捕捉到了日周期性斜坡风系统的大多数关键特征,特别是白天和夜间阶段的不对称性。此外,该模型还可以探索这些气流对其发展过程中各种因素的敏感性,并为更现实的斜坡风分析解决方案提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An analytical model for daily‐periodic slope winds. Part 2: Solutions
This article presents an analytical model for the diurnal cycle of slope‐normal profiles of potential temperature and wind speed characterizing thermally driven slope winds, generated by a daily‐periodic surface energy budget. The model extends the solution proposed by Zardi and Serafin, originally formulated for a pure sinusoidal surface forcing temperature. To account for the asymmetric features characterizing the daytime and nighttime phases, a full Fourier series expansion is derived, the coefficients and phases of which are prescribed from the surface energy budget driven by the daily‐periodic radiation model described in Part 1 of the present work. The model is applicable for any slope angle () and orientation, at any latitude and elevation (up to 2500 m), and for all seasons. Despite some inherent limitations, the most remarkable being the absence of moist processes and latent heat fluxes, the model captures most key features of daily‐periodic slope wind systems, in particular the asymmetry between daytime and nighttime phases. Moreover, it allows exploration of the sensitivity of these flows to the various factors concurring in their development, and offers a basis for more realistic analytical solutions for slope winds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1