蛋白质编码基因上的 RNA-DNA 杂交因 RNase H 的缺失而稳定,并与裂殖酵母 S 期的 DNA 损伤有关

IF 1.3 4区 生物学 Q4 CELL BIOLOGY Genes to Cells Pub Date : 2024-09-10 DOI:10.1111/gtc.13157
Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai
{"title":"蛋白质编码基因上的 RNA-DNA 杂交因 RNase H 的缺失而稳定,并与裂殖酵母 S 期的 DNA 损伤有关","authors":"Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai","doi":"10.1111/gtc.13157","DOIUrl":null,"url":null,"abstract":"RNA–DNA hybrid is a part of the R‐loop which is an important non‐standard nucleic acid structure. RNA–DNA hybrid/R‐loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in <jats:italic>rnh1∆rnh201∆</jats:italic> cells lacking cellular RNase H activity, but not in the wild‐type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In <jats:italic>rnh1∆rnh201∆</jats:italic> cells, cells with multiple Rad52 foci increase during S‐phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S‐phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M‐phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in <jats:italic>rnh1∆rnh201∆</jats:italic> cells generate DNA damages during S‐phase, potentially through collision with DNA replication forks.","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S‐phase in fission yeast\",\"authors\":\"Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai\",\"doi\":\"10.1111/gtc.13157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA–DNA hybrid is a part of the R‐loop which is an important non‐standard nucleic acid structure. RNA–DNA hybrid/R‐loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in <jats:italic>rnh1∆rnh201∆</jats:italic> cells lacking cellular RNase H activity, but not in the wild‐type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In <jats:italic>rnh1∆rnh201∆</jats:italic> cells, cells with multiple Rad52 foci increase during S‐phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S‐phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M‐phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in <jats:italic>rnh1∆rnh201∆</jats:italic> cells generate DNA damages during S‐phase, potentially through collision with DNA replication forks.\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/gtc.13157\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/gtc.13157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RNA-DNA 杂交是 R 环的一部分,而 R 环是一种重要的非标准核酸结构。RNA-DNA 杂交/R-环通过诱导 DNA 损伤或抑制 DNA 复制而导致基因组不稳定。它在转录、复制、重组和修复的调控中也发挥着重要的生物学作用。在这里,我们利用催化不活跃的人类 RNase H1 突变体(D145N)来观察裂殖酵母细胞中的 RNA-DNA 杂交并绘制其基因组位置图。在缺乏细胞 RNase H 活性的 rnh1∆rnh201∆ 细胞中,RNA-DNA 杂交表现为多个核病灶,而在野生型细胞中则没有。大多数 RNA-DNA 杂交位点都是在蛋白质编码区和 tRNA 上检测到的。在 rnh1∆rnh201∆ 细胞中,具有多个 Rad52 病灶的细胞在 S 期增加,约 20% 的 RNA-DNA 杂交位点与 Rad52 位点重叠。在 S 期,与 M 期相比,在蛋白质编码区观察到的 Rad52 与 RNA-DNA 杂交的关联更强。这些结果表明,rnh1∆rnh201∆细胞蛋白质编码区中持续存在的RNA-DNA杂交在S期可能通过与DNA复制叉碰撞而产生DNA损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S‐phase in fission yeast
RNA–DNA hybrid is a part of the R‐loop which is an important non‐standard nucleic acid structure. RNA–DNA hybrid/R‐loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild‐type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S‐phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S‐phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M‐phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S‐phase, potentially through collision with DNA replication forks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
期刊最新文献
The repertoire of G-protein-coupled receptor variations in the Japanese population 54KJPN. Elimination of physiological senescent cutaneous cells in a novel p16‐dependent senolytic mouse model impacts lipid metabolism in skin aging Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice. Capsaicin modulates TRPV1, induces β‐defensin expression, and regulates NF‐κB in oral senescent cells and a murine model Neonatal Fc receptor is a functional receptor for classical human astrovirus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1