{"title":"拉应力下结构裂纹扩展的相场建模","authors":"Chaima Mastouri, Ahmed Frikha, Radhi Abdelmoula","doi":"10.1007/s11012-024-01869-0","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a numerical implementation of phase field models in structures subjected to tensile stress in both quasi-static and dynamic fracture cases. It focuses on the AT1 model and the phase field regularized cohesive zone model (PF-CZM) to compare their performance. Within these models, we focus on implementing the irreversibility condition using the penalization method rather than (Miehe et al. in Comput Methods Appl Mech Eng 199(45–48):2765–2778, 2010. https://doi.org/10.1016/j.cma.2010.04.011)’s “History field” method. Moreover, we employed a staggered algorithmic implementation due to its proven robustness. Numerical simulations were conducted using the multi-physic finite element code, COMSOL Multiphysics. The geometries analyzed include a notched and un-notched confined beam under stretching load and a ring under internal pressure. The originality of this work is presented in two parts. The first part consists in the implementation of the penalization technique within COMSOL Multiphysics. Then we investigated the effects of parameters like cohesive softening laws, notch depth and shape, mesh sensitivity, and length scale sensitivity on the confined beam responses. The second part of this manuscript consists in studying the dynamic fragmentation of a ring under internal pressure. A new solution is proposed to capture crack nucleation and propagation without randomizing material parameters.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase field modeling of crack propagation in structures under tensile stress\",\"authors\":\"Chaima Mastouri, Ahmed Frikha, Radhi Abdelmoula\",\"doi\":\"10.1007/s11012-024-01869-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a numerical implementation of phase field models in structures subjected to tensile stress in both quasi-static and dynamic fracture cases. It focuses on the AT1 model and the phase field regularized cohesive zone model (PF-CZM) to compare their performance. Within these models, we focus on implementing the irreversibility condition using the penalization method rather than (Miehe et al. in Comput Methods Appl Mech Eng 199(45–48):2765–2778, 2010. https://doi.org/10.1016/j.cma.2010.04.011)’s “History field” method. Moreover, we employed a staggered algorithmic implementation due to its proven robustness. Numerical simulations were conducted using the multi-physic finite element code, COMSOL Multiphysics. The geometries analyzed include a notched and un-notched confined beam under stretching load and a ring under internal pressure. The originality of this work is presented in two parts. The first part consists in the implementation of the penalization technique within COMSOL Multiphysics. Then we investigated the effects of parameters like cohesive softening laws, notch depth and shape, mesh sensitivity, and length scale sensitivity on the confined beam responses. The second part of this manuscript consists in studying the dynamic fragmentation of a ring under internal pressure. A new solution is proposed to capture crack nucleation and propagation without randomizing material parameters.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01869-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01869-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Phase field modeling of crack propagation in structures under tensile stress
This paper presents a numerical implementation of phase field models in structures subjected to tensile stress in both quasi-static and dynamic fracture cases. It focuses on the AT1 model and the phase field regularized cohesive zone model (PF-CZM) to compare their performance. Within these models, we focus on implementing the irreversibility condition using the penalization method rather than (Miehe et al. in Comput Methods Appl Mech Eng 199(45–48):2765–2778, 2010. https://doi.org/10.1016/j.cma.2010.04.011)’s “History field” method. Moreover, we employed a staggered algorithmic implementation due to its proven robustness. Numerical simulations were conducted using the multi-physic finite element code, COMSOL Multiphysics. The geometries analyzed include a notched and un-notched confined beam under stretching load and a ring under internal pressure. The originality of this work is presented in two parts. The first part consists in the implementation of the penalization technique within COMSOL Multiphysics. Then we investigated the effects of parameters like cohesive softening laws, notch depth and shape, mesh sensitivity, and length scale sensitivity on the confined beam responses. The second part of this manuscript consists in studying the dynamic fragmentation of a ring under internal pressure. A new solution is proposed to capture crack nucleation and propagation without randomizing material parameters.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.