Chudamani Sharma Prakash, Jieqin Li, Paul W. Bible, Carina A. Collins, Wenmiao Tu, Jingyi Xu, Yi-Hong Wang
{"title":"藤黄属植物和水稻中植物大小相关基因的系统发生组鉴定和过表达","authors":"Chudamani Sharma Prakash, Jieqin Li, Paul W. Bible, Carina A. Collins, Wenmiao Tu, Jingyi Xu, Yi-Hong Wang","doi":"10.1111/grs.12430","DOIUrl":null,"url":null,"abstract":"<p>Plant size is a critical component of agricultural productivity as larger plants produce more biomass. To identify genes related to plant size, we grouped C<sub>4</sub> grasses into small and large and used OrthoFinder to find orthologous genes present in large but absent in small grasses. Three such genes were identified from sorghum (<i>Sorghum bicolor</i> [L.] Moench) by phylogenomic approach, and they encode nitrate transporter (Sobic.007G213200), oxysterol binding protein (SbRio.01G578800) and thioredoxin reductase (SbRio.05G168300), respectively. Overexpression of all three genes driven by the maize ubiquitin promoter in <i>Setaria viridis</i> (L.) Beauv. indicates that they all affected plant size as measured by plant height and tiller number. Both nitrate transporter and oxysterol binding protein increased plant height and tiller number, and thioredoxin reductase significantly decreased tiller number but had minimal effect on plant height. In rice (<i>Oryza sativa</i> L.), all three constructs reduced plant height significantly. The only commonality between the transgenic species was that nitrate transporter and oxysterol binding protein increased tiller number in both <i>S. viridis</i> and rice. Overall, we have demonstrated that phytogenomic approach can be used to identify genes responsible for large plant size in the grasses.</p>","PeriodicalId":56078,"journal":{"name":"Grassland Science","volume":"70 4","pages":"151-159"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenomic identification and overexpression of plant size–related genes in Setaria viridis and rice\",\"authors\":\"Chudamani Sharma Prakash, Jieqin Li, Paul W. Bible, Carina A. Collins, Wenmiao Tu, Jingyi Xu, Yi-Hong Wang\",\"doi\":\"10.1111/grs.12430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant size is a critical component of agricultural productivity as larger plants produce more biomass. To identify genes related to plant size, we grouped C<sub>4</sub> grasses into small and large and used OrthoFinder to find orthologous genes present in large but absent in small grasses. Three such genes were identified from sorghum (<i>Sorghum bicolor</i> [L.] Moench) by phylogenomic approach, and they encode nitrate transporter (Sobic.007G213200), oxysterol binding protein (SbRio.01G578800) and thioredoxin reductase (SbRio.05G168300), respectively. Overexpression of all three genes driven by the maize ubiquitin promoter in <i>Setaria viridis</i> (L.) Beauv. indicates that they all affected plant size as measured by plant height and tiller number. Both nitrate transporter and oxysterol binding protein increased plant height and tiller number, and thioredoxin reductase significantly decreased tiller number but had minimal effect on plant height. In rice (<i>Oryza sativa</i> L.), all three constructs reduced plant height significantly. The only commonality between the transgenic species was that nitrate transporter and oxysterol binding protein increased tiller number in both <i>S. viridis</i> and rice. Overall, we have demonstrated that phytogenomic approach can be used to identify genes responsible for large plant size in the grasses.</p>\",\"PeriodicalId\":56078,\"journal\":{\"name\":\"Grassland Science\",\"volume\":\"70 4\",\"pages\":\"151-159\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grassland Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/grs.12430\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/grs.12430","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phylogenomic identification and overexpression of plant size–related genes in Setaria viridis and rice
Plant size is a critical component of agricultural productivity as larger plants produce more biomass. To identify genes related to plant size, we grouped C4 grasses into small and large and used OrthoFinder to find orthologous genes present in large but absent in small grasses. Three such genes were identified from sorghum (Sorghum bicolor [L.] Moench) by phylogenomic approach, and they encode nitrate transporter (Sobic.007G213200), oxysterol binding protein (SbRio.01G578800) and thioredoxin reductase (SbRio.05G168300), respectively. Overexpression of all three genes driven by the maize ubiquitin promoter in Setaria viridis (L.) Beauv. indicates that they all affected plant size as measured by plant height and tiller number. Both nitrate transporter and oxysterol binding protein increased plant height and tiller number, and thioredoxin reductase significantly decreased tiller number but had minimal effect on plant height. In rice (Oryza sativa L.), all three constructs reduced plant height significantly. The only commonality between the transgenic species was that nitrate transporter and oxysterol binding protein increased tiller number in both S. viridis and rice. Overall, we have demonstrated that phytogenomic approach can be used to identify genes responsible for large plant size in the grasses.
Grassland ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍:
Grassland Science is the official English language journal of the Japanese Society of Grassland Science. It publishes original research papers, review articles and short reports in all aspects of grassland science, with an aim of presenting and sharing knowledge, ideas and philosophies on better management and use of grasslands, forage crops and turf plants for both agricultural and non-agricultural purposes across the world. Contributions from anyone, non-members as well as members, are welcome in any of the following fields:
grassland environment, landscape, ecology and systems analysis;
pasture and lawn establishment, management and cultivation;
grassland utilization, animal management, behavior, nutrition and production;
forage conservation, processing, storage, utilization and nutritive value;
physiology, morphology, pathology and entomology of plants;
breeding and genetics;
physicochemical property of soil, soil animals and microorganisms and plant
nutrition;
economics in grassland systems.