利用先验知识进行量子搜索

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-08-20 DOI:10.1007/s11432-023-3972-y
Xiaoyu He, Xiaoming Sun, Jialing Zhang
{"title":"利用先验知识进行量子搜索","authors":"Xiaoyu He, Xiaoming Sun, Jialing Zhang","doi":"10.1007/s11432-023-3972-y","DOIUrl":null,"url":null,"abstract":"<p>The combination of contextual side information and search is a powerful paradigm in the scope of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be imperfect. Contextual information can arise naturally, for example in game AI where prior knowledge is used to bias move decisions. In this work we investigate the problem of taking quantum advantage of contextual information, especially searching with prior knowledge. We propose a new generalization of Grover’s search algorithm that achieves the optimal expected success probability of finding the solution if the number of queries is fixed. Experiments on small-scale quantum circuits verify the advantage of our algorithm. Since contextual information exists widely, our method has wide applications. We take game tree search as an example.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum search with prior knowledge\",\"authors\":\"Xiaoyu He, Xiaoming Sun, Jialing Zhang\",\"doi\":\"10.1007/s11432-023-3972-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The combination of contextual side information and search is a powerful paradigm in the scope of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be imperfect. Contextual information can arise naturally, for example in game AI where prior knowledge is used to bias move decisions. In this work we investigate the problem of taking quantum advantage of contextual information, especially searching with prior knowledge. We propose a new generalization of Grover’s search algorithm that achieves the optimal expected success probability of finding the solution if the number of queries is fixed. Experiments on small-scale quantum circuits verify the advantage of our algorithm. Since contextual information exists widely, our method has wide applications. We take game tree search as an example.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-3972-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3972-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景侧信息与搜索的结合是人工智能领域的一个强大范例。先验知识可以识别可能的解决方案,但可能并不完善。情境信息可能会自然产生,例如在游戏人工智能中,先验知识会被用来影响移动决策。在这项工作中,我们研究了如何利用上下文信息的量子优势,特别是利用先验知识进行搜索的问题。我们提出了一种新的格罗弗搜索算法广义化,在查询次数固定的情况下,该算法能达到找到解决方案的最佳预期成功概率。在小规模量子电路上的实验验证了我们算法的优势。由于上下文信息广泛存在,我们的方法具有广泛的应用前景。我们以博弈树搜索为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum search with prior knowledge

The combination of contextual side information and search is a powerful paradigm in the scope of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be imperfect. Contextual information can arise naturally, for example in game AI where prior knowledge is used to bias move decisions. In this work we investigate the problem of taking quantum advantage of contextual information, especially searching with prior knowledge. We propose a new generalization of Grover’s search algorithm that achieves the optimal expected success probability of finding the solution if the number of queries is fixed. Experiments on small-scale quantum circuits verify the advantage of our algorithm. Since contextual information exists widely, our method has wide applications. We take game tree search as an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1