用于机器人大面积触觉传感的数据驱动电阻断层成像技术

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-08-19 DOI:10.1007/s11432-023-4130-3
Wendong Zheng, Huaping Liu, Xiaofeng Liu, Fuchun Sun
{"title":"用于机器人大面积触觉传感的数据驱动电阻断层成像技术","authors":"Wendong Zheng, Huaping Liu, Xiaofeng Liu, Fuchun Sun","doi":"10.1007/s11432-023-4130-3","DOIUrl":null,"url":null,"abstract":"<p>In this article, a novel DDERT sensing method is proposed for large-area tactile sensing. In particular, the method utilizes a generative model to reconstruct the boundary measurement voltage of the ERT sensor into a tactile image. To improve the quality of tactile imaging, a spatial attention mechanism is incorporated into the model. Additionally, a mask constraint is introduced as prior information to ensure that the generated images contain more accurate tactile information in areas of contact with objects. Experimental results validate the proposed method is effective for the large-area robotic tactile sensing. Furthermore, the prototype of the ERT-based tactile sensor is fabricated and the sensing performance is evaluated in real robotic applications.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"51 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven electrical resistance tomography for robotic large-area tactile sensing\",\"authors\":\"Wendong Zheng, Huaping Liu, Xiaofeng Liu, Fuchun Sun\",\"doi\":\"10.1007/s11432-023-4130-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, a novel DDERT sensing method is proposed for large-area tactile sensing. In particular, the method utilizes a generative model to reconstruct the boundary measurement voltage of the ERT sensor into a tactile image. To improve the quality of tactile imaging, a spatial attention mechanism is incorporated into the model. Additionally, a mask constraint is introduced as prior information to ensure that the generated images contain more accurate tactile information in areas of contact with objects. Experimental results validate the proposed method is effective for the large-area robotic tactile sensing. Furthermore, the prototype of the ERT-based tactile sensor is fabricated and the sensing performance is evaluated in real robotic applications.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4130-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4130-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于大面积触觉传感的新型 DDERT 传感方法。具体而言,该方法利用生成模型将 ERT 传感器的边界测量电压重构为触觉图像。为了提高触觉成像的质量,模型中加入了空间注意机制。此外,还引入了遮罩约束作为先验信息,以确保生成的图像在与物体接触的区域包含更准确的触觉信息。实验结果验证了所提出的方法对于大面积机器人触觉传感是有效的。此外,还制作了基于 ERT 的触觉传感器原型,并在实际机器人应用中对其传感性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven electrical resistance tomography for robotic large-area tactile sensing

In this article, a novel DDERT sensing method is proposed for large-area tactile sensing. In particular, the method utilizes a generative model to reconstruct the boundary measurement voltage of the ERT sensor into a tactile image. To improve the quality of tactile imaging, a spatial attention mechanism is incorporated into the model. Additionally, a mask constraint is introduced as prior information to ensure that the generated images contain more accurate tactile information in areas of contact with objects. Experimental results validate the proposed method is effective for the large-area robotic tactile sensing. Furthermore, the prototype of the ERT-based tactile sensor is fabricated and the sensing performance is evaluated in real robotic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1