Zakaria Abou El Houda;Hajar Moudoud;Bouziane Brik;Muhammad Adil
{"title":"利用量子联合学习在消费者网络中实现高效网络入侵检测的隐私保护框架","authors":"Zakaria Abou El Houda;Hajar Moudoud;Bouziane Brik;Muhammad Adil","doi":"10.1109/TCE.2024.3458985","DOIUrl":null,"url":null,"abstract":"The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 4","pages":"7121-7128"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning\",\"authors\":\"Zakaria Abou El Houda;Hajar Moudoud;Bouziane Brik;Muhammad Adil\",\"doi\":\"10.1109/TCE.2024.3458985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"70 4\",\"pages\":\"7121-7128\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679217/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679217/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning
The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.