对 Timoshenko 梁模型进行简单扩展,以描述水泥基构件中的耗散情况

Giuliano Aretusi, Christian Cardillo, Antonello Salvatori, Ewa Bednarczyk, Roberto Fedele
{"title":"对 Timoshenko 梁模型进行简单扩展,以描述水泥基构件中的耗散情况","authors":"Giuliano Aretusi, Christian Cardillo, Antonello Salvatori, Ewa Bednarczyk, Roberto Fedele","doi":"10.1007/s00033-024-02304-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an extension of the Timoshenko model for plane beams is outlined, with the aim of describing, under the assumption of small displacements and strains, a class of dissipative mechanisms observed in cementitious materials. In the spirit of micromorphic continua, the modified beam model includes a novel kinematic descriptor, conceived as an average sliding relevant to a density of micro-cracks not varying along time. For the pairs of rough surfaces, in which such a distribution of micro-cracks is articulated, both an elastic deformation and a frictional dissipation are considered, similarly to what occurs for the fingers of the joints having a tooth saw profile. The system of governing differential equations, of the second order, is provided by a variational approach, endowed by standard boundary conditions. To this purpose, a generalized version of the principle of virtual work is used, in the spirit of Hamilton–Rayleigh approach, including as contributions: (i) the variation of the inner elastic energy, generated by the linear elasticity of the sound material and, in a nonlinear way, by the mutual, reversible deformation of the asperities inside the micro-cracks; (ii) the virtual work of the external actions consistent with the beam model, i.e., the distributed transversal forces and the moments per unit lengths; besides these two contributions, constituting the conservative part of the system, (iii) the dissipation due to friction specified through a smooth Rayleigh potential, entering a nonlinear dependence of viscous and Coulomb type on the sliding rate. Through a COMSOL Multiphysics implementation, 1D finite element analyses are carried out to simulate structural elements subjected to three- and four-point bending tests with alternating loading cycles. The dissipation of energy is investigated at varying the model parameters, and the predictions turn out to be in agreement with preliminary data from an experimental campaign. The present approach is expected to provide a valuable tool for the quantitative and comparative assessment of the hysteresis cycles, favoring the robust design of cementitious materials.</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple extension of Timoshenko beam model to describe dissipation in cementitious elements\",\"authors\":\"Giuliano Aretusi, Christian Cardillo, Antonello Salvatori, Ewa Bednarczyk, Roberto Fedele\",\"doi\":\"10.1007/s00033-024-02304-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an extension of the Timoshenko model for plane beams is outlined, with the aim of describing, under the assumption of small displacements and strains, a class of dissipative mechanisms observed in cementitious materials. In the spirit of micromorphic continua, the modified beam model includes a novel kinematic descriptor, conceived as an average sliding relevant to a density of micro-cracks not varying along time. For the pairs of rough surfaces, in which such a distribution of micro-cracks is articulated, both an elastic deformation and a frictional dissipation are considered, similarly to what occurs for the fingers of the joints having a tooth saw profile. The system of governing differential equations, of the second order, is provided by a variational approach, endowed by standard boundary conditions. To this purpose, a generalized version of the principle of virtual work is used, in the spirit of Hamilton–Rayleigh approach, including as contributions: (i) the variation of the inner elastic energy, generated by the linear elasticity of the sound material and, in a nonlinear way, by the mutual, reversible deformation of the asperities inside the micro-cracks; (ii) the virtual work of the external actions consistent with the beam model, i.e., the distributed transversal forces and the moments per unit lengths; besides these two contributions, constituting the conservative part of the system, (iii) the dissipation due to friction specified through a smooth Rayleigh potential, entering a nonlinear dependence of viscous and Coulomb type on the sliding rate. Through a COMSOL Multiphysics implementation, 1D finite element analyses are carried out to simulate structural elements subjected to three- and four-point bending tests with alternating loading cycles. The dissipation of energy is investigated at varying the model parameters, and the predictions turn out to be in agreement with preliminary data from an experimental campaign. The present approach is expected to provide a valuable tool for the quantitative and comparative assessment of the hysteresis cycles, favoring the robust design of cementitious materials.</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02304-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02304-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了季莫申科平面梁模型的扩展,目的是在小位移和小应变的假设条件下,描述在水泥基材料中观察到的一类耗散机制。本着微形态连续体的精神,改进后的梁模型包括一个新颖的运动描述符,即与不随时间变化的微裂缝密度相关的平均滑动。对于连接微裂纹分布的粗糙表面对,既要考虑弹性变形,也要考虑摩擦耗散,这与具有齿锯轮廓的关节手指的情况类似。二阶微分方程的支配系统是通过变分法和标准边界条件来实现的。为此,根据汉密尔顿-雷利方法的精神,使用了虚功原理的广义版本,包括以下贡献:(i) 由声学材料的线性弹性以及微裂缝内尖角的相互可逆变形以非线性方式产生的内部弹性能量的变化;(ii) 与梁模型一致的外部作用的虚功,即:分布式横向力和横向力的作用;(iii) 与梁模型一致的外部作用的虚功,即:分布式横向力和横向力的作用;(iv) 与梁模型一致的外部作用的虚功、除了这两个构成系统保守部分的贡献外,(iii) 通过平滑的瑞利势(Rayleigh potential)指定的摩擦引起的耗散,进入粘性和库仑类型对滑动速率的非线性依赖。通过 COMSOL Multiphysics 软件的实施,进行了一维有限元分析,以模拟结构元素在交替加载循环下进行的三点和四点弯曲试验。在改变模型参数时对能量耗散进行了研究,结果表明预测结果与实验活动的初步数据一致。本方法有望为滞后周期的定量比较评估提供有价值的工具,有利于水泥基材料的稳健设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple extension of Timoshenko beam model to describe dissipation in cementitious elements

In this paper, an extension of the Timoshenko model for plane beams is outlined, with the aim of describing, under the assumption of small displacements and strains, a class of dissipative mechanisms observed in cementitious materials. In the spirit of micromorphic continua, the modified beam model includes a novel kinematic descriptor, conceived as an average sliding relevant to a density of micro-cracks not varying along time. For the pairs of rough surfaces, in which such a distribution of micro-cracks is articulated, both an elastic deformation and a frictional dissipation are considered, similarly to what occurs for the fingers of the joints having a tooth saw profile. The system of governing differential equations, of the second order, is provided by a variational approach, endowed by standard boundary conditions. To this purpose, a generalized version of the principle of virtual work is used, in the spirit of Hamilton–Rayleigh approach, including as contributions: (i) the variation of the inner elastic energy, generated by the linear elasticity of the sound material and, in a nonlinear way, by the mutual, reversible deformation of the asperities inside the micro-cracks; (ii) the virtual work of the external actions consistent with the beam model, i.e., the distributed transversal forces and the moments per unit lengths; besides these two contributions, constituting the conservative part of the system, (iii) the dissipation due to friction specified through a smooth Rayleigh potential, entering a nonlinear dependence of viscous and Coulomb type on the sliding rate. Through a COMSOL Multiphysics implementation, 1D finite element analyses are carried out to simulate structural elements subjected to three- and four-point bending tests with alternating loading cycles. The dissipation of energy is investigated at varying the model parameters, and the predictions turn out to be in agreement with preliminary data from an experimental campaign. The present approach is expected to provide a valuable tool for the quantitative and comparative assessment of the hysteresis cycles, favoring the robust design of cementitious materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractional wave equation with irregular mass and dissipation On a quasilinear two-species chemotaxis system with general kinetic functions and interspecific competition Multiplicity and concentration behavior of solutions for magnetic Choquard equation with critical growth Eventual smoothness in a chemotaxis-Navier–Stokes system with indirect signal production involving Dirichlet signal boundary condition Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with flux limitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1