准凸最小化的子梯度投影法

IF 0.8 3区 数学 Q2 MATHEMATICS Positivity Pub Date : 2024-09-05 DOI:10.1007/s11117-024-01082-z
Juan Choque, Felipe Lara, Raúl T. Marcavillaca
{"title":"准凸最小化的子梯度投影法","authors":"Juan Choque, Felipe Lara, Raúl T. Marcavillaca","doi":"10.1007/s11117-024-01082-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a subgradient projection method for quasiconvex minimization problems is provided. By employing strong subdifferentials, it is proved that the generated sequence of the proposed algorithm converges to the solution of the minimization problem of a proper, lower semicontinuous, and strongly quasiconvex function (in the sense of Polyak in Soviet Math 7:72–75, 1966), under the same assumptions as those required for convex functions with the convex subdifferentials. Furthermore, a quasi-linear convergence rate of the iterates, extending similar results for the general quasiconvex case, is also provided.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"35 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subgradient projection method for quasiconvex minimization\",\"authors\":\"Juan Choque, Felipe Lara, Raúl T. Marcavillaca\",\"doi\":\"10.1007/s11117-024-01082-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a subgradient projection method for quasiconvex minimization problems is provided. By employing strong subdifferentials, it is proved that the generated sequence of the proposed algorithm converges to the solution of the minimization problem of a proper, lower semicontinuous, and strongly quasiconvex function (in the sense of Polyak in Soviet Math 7:72–75, 1966), under the same assumptions as those required for convex functions with the convex subdifferentials. Furthermore, a quasi-linear convergence rate of the iterates, extending similar results for the general quasiconvex case, is also provided.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01082-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01082-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一种用于准凸最小化问题的子梯度投影方法。通过使用强次微分,证明了所提算法生成的序列,在与凸函数与凸次微分所需的假设相同的情况下,收敛于适当的、下半连续的、强准凸函数(Polyak 在 Soviet Math 7:72-75, 1966 中的意义)的最小化问题的解。此外,还提供了迭代的准线性收敛率,扩展了一般准凸情况下的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A subgradient projection method for quasiconvex minimization

In this paper, a subgradient projection method for quasiconvex minimization problems is provided. By employing strong subdifferentials, it is proved that the generated sequence of the proposed algorithm converges to the solution of the minimization problem of a proper, lower semicontinuous, and strongly quasiconvex function (in the sense of Polyak in Soviet Math 7:72–75, 1966), under the same assumptions as those required for convex functions with the convex subdifferentials. Furthermore, a quasi-linear convergence rate of the iterates, extending similar results for the general quasiconvex case, is also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
期刊最新文献
Positive solutions for nonlocal differential equations with concave and convex coefficients A new minimal element theorem and new generalizations of Ekeland’s variational principle in complete lattice optimization problem On representations and topological aspects of positive maps on non-unital quasi *- algebras A subgradient projection method for quasiconvex minimization A contribution to operators between Banach lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1