James W Swann, Ruiyuan Zhang, Evgenia V Verovskaya, Fernando J Calero-Nieto, Xiaonan Wang, Melissa A Proven, Peter T Shyu, Edward Guo, Berthold Gottgens, Emmanuelle Passegue
{"title":"炎症通过重塑骨髓龛的特定区块来扰乱造血功能","authors":"James W Swann, Ruiyuan Zhang, Evgenia V Verovskaya, Fernando J Calero-Nieto, Xiaonan Wang, Melissa A Proven, Peter T Shyu, Edward Guo, Berthold Gottgens, Emmanuelle Passegue","doi":"10.1101/2024.09.12.612751","DOIUrl":null,"url":null,"abstract":"Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflammation perturbs hematopoiesis by remodeling specific compartments of the bone marrow niche\",\"authors\":\"James W Swann, Ruiyuan Zhang, Evgenia V Verovskaya, Fernando J Calero-Nieto, Xiaonan Wang, Melissa A Proven, Peter T Shyu, Edward Guo, Berthold Gottgens, Emmanuelle Passegue\",\"doi\":\"10.1101/2024.09.12.612751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.12.612751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
造血干细胞和祖细胞(HSPC)通过与骨髓(BM)腔中的基质细胞相互作用而受到调控,骨髓(BM)腔在空间上可分为骨髓中央(CM)和骨膜内(Endo)两个区室。然而,这种空间分区对于骨髓对炎症和肿瘤反应的重要性在很大程度上仍不为人所知。在这里,我们广泛验证了 scRNA-seq 图谱分析和匹配流式细胞术分离的组合,它能在不同小鼠品系中重复鉴定 7 个关键的 CM 和内膜群体,并准确调查这两个壁龛位置。我们证明,不同的扰动会对不同的分区产生特定的影响,I型干扰素反应会导致CM间充质基质细胞出现炎症表型,与此同时,趋化因子的过度分泌会调节周围微环境中局部单核细胞的动态变化。我们的研究结果为基质的分子和功能特征描述提供了一种全面的方法,并强调了改变的气孔细胞活性在调节造血对炎症挑战的反应中的重要性。
Inflammation perturbs hematopoiesis by remodeling specific compartments of the bone marrow niche
Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.