衰老小鼠各组织的自噬作用

Julian M Carosi, Alexis Martin, Leanne K Hein, Sofia Hassiotis, Kathryn J Hattersley, Celia Fourrier, Julien Bensalem, Timothy J Sargeant
{"title":"衰老小鼠各组织的自噬作用","authors":"Julian M Carosi, Alexis Martin, Leanne K Hein, Sofia Hassiotis, Kathryn J Hattersley, Celia Fourrier, Julien Bensalem, Timothy J Sargeant","doi":"10.1101/2024.09.11.612427","DOIUrl":null,"url":null,"abstract":"Autophagy is a waste-disposal pathway that protects against age-related pathology. It is widely accepted that autophagy declines with age, yet role that sex and diet-related obesity play during aging remain unknown. Here, we present the most comprehensive in vivo study of autophagic flux to date. We employed transgenic mice overexpressing tandem-florescent LC3B (RFP-GFP-LC3B) to measure autophagic flux in the blood (PBMCs), heart, and motor cortex of aging mice that were fed regular chow or a high-fat diet for 6-, 12- or 18-months. In male mice, aging reduced autophagic flux in the heart and brain, but increased it in the blood. Age-dependent changes in female autophagic flux was less pronounced. Autophagic flux was modified by a high-fat diet in the blood and heart of male but not female mice. Overall, we uncovered sexual dimorphisms that underpin how autophagy changes with age across different tissues and in response to a high-fat diet.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"2011 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autophagy across tissues of aging mice\",\"authors\":\"Julian M Carosi, Alexis Martin, Leanne K Hein, Sofia Hassiotis, Kathryn J Hattersley, Celia Fourrier, Julien Bensalem, Timothy J Sargeant\",\"doi\":\"10.1101/2024.09.11.612427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autophagy is a waste-disposal pathway that protects against age-related pathology. It is widely accepted that autophagy declines with age, yet role that sex and diet-related obesity play during aging remain unknown. Here, we present the most comprehensive in vivo study of autophagic flux to date. We employed transgenic mice overexpressing tandem-florescent LC3B (RFP-GFP-LC3B) to measure autophagic flux in the blood (PBMCs), heart, and motor cortex of aging mice that were fed regular chow or a high-fat diet for 6-, 12- or 18-months. In male mice, aging reduced autophagic flux in the heart and brain, but increased it in the blood. Age-dependent changes in female autophagic flux was less pronounced. Autophagic flux was modified by a high-fat diet in the blood and heart of male but not female mice. Overall, we uncovered sexual dimorphisms that underpin how autophagy changes with age across different tissues and in response to a high-fat diet.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自噬是一种废物处理途径,可防止与衰老有关的病变。人们普遍认为自噬作用会随着年龄的增长而减弱,但性别和与饮食有关的肥胖在衰老过程中所起的作用仍然未知。在这里,我们展示了迄今为止最全面的体内自噬通量研究。我们利用过表达串联荧光 LC3B(RFP-GFP-LC3B)的转基因小鼠来测量以普通饲料或高脂饮食喂养 6、12 或 18 个月的衰老小鼠的血液(PBMCs)、心脏和运动皮层中的自噬通量。在雄性小鼠中,衰老会降低心脏和大脑中的自噬通量,但会增加血液中的自噬通量。雌性自噬通量随年龄的变化不太明显。高脂肪饮食改变了雄性小鼠血液和心脏中的自噬通量,但没有改变雌性小鼠的自噬通量。总之,我们发现了自噬随年龄在不同组织中的变化以及对高脂肪饮食反应的性别二态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autophagy across tissues of aging mice
Autophagy is a waste-disposal pathway that protects against age-related pathology. It is widely accepted that autophagy declines with age, yet role that sex and diet-related obesity play during aging remain unknown. Here, we present the most comprehensive in vivo study of autophagic flux to date. We employed transgenic mice overexpressing tandem-florescent LC3B (RFP-GFP-LC3B) to measure autophagic flux in the blood (PBMCs), heart, and motor cortex of aging mice that were fed regular chow or a high-fat diet for 6-, 12- or 18-months. In male mice, aging reduced autophagic flux in the heart and brain, but increased it in the blood. Age-dependent changes in female autophagic flux was less pronounced. Autophagic flux was modified by a high-fat diet in the blood and heart of male but not female mice. Overall, we uncovered sexual dimorphisms that underpin how autophagy changes with age across different tissues and in response to a high-fat diet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of Type 1 Diabetes Differential translocation of bacteriophages across the intestinal barrier in health and Crohn's disease Dynamic phosphorylation of Hcm1 promotes fitness in chronic stress Development of a cell-permeable Biotin-HaloTag ligand to explore functional differences between protein variants across cellular generations The role of disease state in confined migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1