优化扩展显微镜揭示了章鱼卵提取物中物种特异性纺锤体微管组织

Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pécot, Romain Gibeaux
{"title":"优化扩展显微镜揭示了章鱼卵提取物中物种特异性纺锤体微管组织","authors":"Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pécot, Romain Gibeaux","doi":"10.1101/2024.09.11.612005","DOIUrl":null,"url":null,"abstract":"The spindle is a key structure in cell division as it orchestrates the accurate segregation of genetic material. While its assembly and function are well-studied, the mechanisms regulating spindle architecture remain elusive. In this study, we focus on the differences in spindle organization between <em>Xenopus laevis</em> and <em>Xenopus tropicalis</em>, leveraging expansion microscopy (ExM) to overcome the limitations of conventional imaging techniques. We optimized an ExM protocol tailored for <em>Xenopus</em> egg extract spindles, improving upon fixation, denaturation and gelation methods to achieve higher resolution imaging of spindles. Our protocol preserves spindle integrity and allows effective pre-expansion immunofluorescence. This method enabled detailed analysis of the differences in microtubule organization between the two species. <em>X. laevis</em> spindles overall exhibit a broader range of bundle sizes, while <em>X. tropicalis</em> spindles are more limited to smaller bundles. Moreover, while both species favor larger bundle sizes near and at the spindle center, <em>X. tropicalis</em> spindles otherwise prefer very small bundles, and <em>X. laevis</em> spindles medium-sized bundles. By enhancing resolution and minimizing distortions and fixation artifacts, our optimized ExM approach offers new insights into spindle morphology and provides a robust tool for studying the structural intricacies of these large cellular assemblies. This work advances our understanding of spindle architecture and opens up new avenues for exploring spindle-related questions.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts\",\"authors\":\"Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pécot, Romain Gibeaux\",\"doi\":\"10.1101/2024.09.11.612005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spindle is a key structure in cell division as it orchestrates the accurate segregation of genetic material. While its assembly and function are well-studied, the mechanisms regulating spindle architecture remain elusive. In this study, we focus on the differences in spindle organization between <em>Xenopus laevis</em> and <em>Xenopus tropicalis</em>, leveraging expansion microscopy (ExM) to overcome the limitations of conventional imaging techniques. We optimized an ExM protocol tailored for <em>Xenopus</em> egg extract spindles, improving upon fixation, denaturation and gelation methods to achieve higher resolution imaging of spindles. Our protocol preserves spindle integrity and allows effective pre-expansion immunofluorescence. This method enabled detailed analysis of the differences in microtubule organization between the two species. <em>X. laevis</em> spindles overall exhibit a broader range of bundle sizes, while <em>X. tropicalis</em> spindles are more limited to smaller bundles. Moreover, while both species favor larger bundle sizes near and at the spindle center, <em>X. tropicalis</em> spindles otherwise prefer very small bundles, and <em>X. laevis</em> spindles medium-sized bundles. By enhancing resolution and minimizing distortions and fixation artifacts, our optimized ExM approach offers new insights into spindle morphology and provides a robust tool for studying the structural intricacies of these large cellular assemblies. This work advances our understanding of spindle architecture and opens up new avenues for exploring spindle-related questions.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纺锤体是细胞分裂中的关键结构,因为它能协调遗传物质的精确分离。虽然对纺锤体的组装和功能进行了深入研究,但纺锤体结构的调控机制仍然难以捉摸。在这项研究中,我们利用膨胀显微镜(ExM)克服了传统成像技术的局限性,重点研究了非洲爪蟾和热带爪蟾之间纺锤体组织的差异。我们优化了为章鱼卵提取物纺锤体量身定制的 ExM 方案,改进了固定、变性和凝胶化方法,以实现更高分辨率的纺锤体成像。我们的方案能保持纺锤体的完整性,并能进行有效的预膨胀免疫荧光。通过这种方法可以详细分析两个物种之间微管组织的差异。X. laevis纺锤体总体上表现出更大范围的束大小,而 X. tropicalis纺锤体则更局限于较小的束。此外,虽然两个物种都喜欢在纺锤中心附近和纺锤中心有较大的束,但热带X.通过提高分辨率、减少扭曲和固定伪影,我们的优化 ExM 方法提供了对纺锤体形态学的新见解,并为研究这些大型细胞组合的复杂结构提供了强有力的工具。这项工作增进了我们对纺锤体结构的了解,为探索纺锤体相关问题开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts
The spindle is a key structure in cell division as it orchestrates the accurate segregation of genetic material. While its assembly and function are well-studied, the mechanisms regulating spindle architecture remain elusive. In this study, we focus on the differences in spindle organization between Xenopus laevis and Xenopus tropicalis, leveraging expansion microscopy (ExM) to overcome the limitations of conventional imaging techniques. We optimized an ExM protocol tailored for Xenopus egg extract spindles, improving upon fixation, denaturation and gelation methods to achieve higher resolution imaging of spindles. Our protocol preserves spindle integrity and allows effective pre-expansion immunofluorescence. This method enabled detailed analysis of the differences in microtubule organization between the two species. X. laevis spindles overall exhibit a broader range of bundle sizes, while X. tropicalis spindles are more limited to smaller bundles. Moreover, while both species favor larger bundle sizes near and at the spindle center, X. tropicalis spindles otherwise prefer very small bundles, and X. laevis spindles medium-sized bundles. By enhancing resolution and minimizing distortions and fixation artifacts, our optimized ExM approach offers new insights into spindle morphology and provides a robust tool for studying the structural intricacies of these large cellular assemblies. This work advances our understanding of spindle architecture and opens up new avenues for exploring spindle-related questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of Type 1 Diabetes Differential translocation of bacteriophages across the intestinal barrier in health and Crohn's disease Dynamic phosphorylation of Hcm1 promotes fitness in chronic stress Development of a cell-permeable Biotin-HaloTag ligand to explore functional differences between protein variants across cellular generations The role of disease state in confined migration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1