安全语义通信:从物理层安全的角度

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-09-02 DOI:10.1109/LCOMM.2024.3452715
Yongkang Li;Zheng Shi;Han Hu;Yaru Fu;Hong Wang;Hongjiang Lei
{"title":"安全语义通信:从物理层安全的角度","authors":"Yongkang Li;Zheng Shi;Han Hu;Yaru Fu;Hong Wang;Hongjiang Lei","doi":"10.1109/LCOMM.2024.3452715","DOIUrl":null,"url":null,"abstract":"Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eavesdropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 10","pages":"2243-2247"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Semantic Communications: From Perspective of Physical Layer Security\",\"authors\":\"Yongkang Li;Zheng Shi;Han Hu;Yaru Fu;Hong Wang;Hongjiang Lei\",\"doi\":\"10.1109/LCOMM.2024.3452715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eavesdropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 10\",\"pages\":\"2243-2247\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10662946/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10662946/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

语义通信被视为一种超越香农范式的潜在技术。与提供比特级安全的现代通信不同,对语义通信的窃听构成了潜在暴露合法用户意图的重大风险。为了应对这一挑战,我们利用物理层安全性,开发了一种新型深度神经网络(DNN)安全语义通信(DeepSSC)系统。为了在安全性和可靠性之间取得平衡,设计了一种分两个阶段训练 DNN 的方法。其中,第一阶段旨在恢复合法用户的语义,而第二阶段则试图最大限度地减少向窃听者泄露语义信息。DeepSSC 在第一和第二阶段的损失函数分别根据香农容量和安全信道容量设计,并利用变分推理对其进行近似。此外,我们还定义了安全双语评估指标(S-BLEU)来评估语义通信的安全性。最后,仿真结果表明,尽管可靠性略有下降,但 DeepSSC 能够显著提高语义安全性,尤其是在高信噪比情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Semantic Communications: From Perspective of Physical Layer Security
Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eavesdropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
Table of Contents IEEE Communications Letters Publication Information IEEE Communications Society Information Table of Contents IEEE Communications Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1