{"title":"在对称离散无记忆信道上学习多速率任务导向通信","authors":"Anbang Zhang;Shuaishuai Guo","doi":"10.1109/LCOMM.2024.3450598","DOIUrl":null,"url":null,"abstract":"This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 10","pages":"2303-2307"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Multi-Rate Task-Oriented Communications Over Symmetric Discrete Memoryless Channels\",\"authors\":\"Anbang Zhang;Shuaishuai Guo\",\"doi\":\"10.1109/LCOMM.2024.3450598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 10\",\"pages\":\"2303-2307\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10649033/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649033/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Learning Multi-Rate Task-Oriented Communications Over Symmetric Discrete Memoryless Channels
This letter introduces a multi-rate task-oriented communication (MR-ToC) framework. This framework dynamically adapts to variations in affordable data rate within the communication pipeline. It conceptualizes communication pipelines as symmetric, discrete, memoryless channels. We employ a progressive learning strategy to train the system, comprising a nested codebook for encoding and task inference. This configuration allows for the adjustment of multiple rate levels in response to evolving channel conditions. The results from our experiments show that this system not only supports edge inference across various coding levels but also excels in adapting to variable communication environments.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.