共生 BackCom 物联网网络中的大规模 MIMO MU-NOMA 能效

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-08-22 DOI:10.1109/LCOMM.2024.3448372
Derek K. P. Asiedu;Sumaila A. Mahama;Ji-Hoon Yun;Mustapha Benjillali;Samir Saoudi
{"title":"共生 BackCom 物联网网络中的大规模 MIMO MU-NOMA 能效","authors":"Derek K. P. Asiedu;Sumaila A. Mahama;Ji-Hoon Yun;Mustapha Benjillali;Samir Saoudi","doi":"10.1109/LCOMM.2024.3448372","DOIUrl":null,"url":null,"abstract":"In this letter, we develop a two-stage framework, based on both analytical modeling and machine learning (ML), for the analysis and optimization of a communication setup where the primary receivers (PRs) of a massive multiple-input multiple-output (mMIMO) multi-user non-orthogonal multiple access (NOMA) enabled primary network (PN) coexist symbiotically with a secondary network (SN) of backscatter-enabled tag transmitters (STs). The PN provides radio frequency signals to excite the semi-passive STs in their backscatter communication channel while gaining spatial diversity from the backscattering of the STs’ desired signals. We aim to jointly optimize the primary transmitter (PT) beamforming, the PRs clustering, and the STs reflection coefficient to achieve maximal energy efficiency (EE). We propose an ML-based modified mean shift clustering for the PR clustering and an alternating optimization (AO) algorithm after the PR clustering to maximize the EE of Symbiotic radio network. We illustrate the proposed approach’s superiority over conventional benchmarks with the help of simulation results.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 10","pages":"2318-2322"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficiency With Massive MIMO MU-NOMA in Symbiotic BackCom IoT Networks\",\"authors\":\"Derek K. P. Asiedu;Sumaila A. Mahama;Ji-Hoon Yun;Mustapha Benjillali;Samir Saoudi\",\"doi\":\"10.1109/LCOMM.2024.3448372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we develop a two-stage framework, based on both analytical modeling and machine learning (ML), for the analysis and optimization of a communication setup where the primary receivers (PRs) of a massive multiple-input multiple-output (mMIMO) multi-user non-orthogonal multiple access (NOMA) enabled primary network (PN) coexist symbiotically with a secondary network (SN) of backscatter-enabled tag transmitters (STs). The PN provides radio frequency signals to excite the semi-passive STs in their backscatter communication channel while gaining spatial diversity from the backscattering of the STs’ desired signals. We aim to jointly optimize the primary transmitter (PT) beamforming, the PRs clustering, and the STs reflection coefficient to achieve maximal energy efficiency (EE). We propose an ML-based modified mean shift clustering for the PR clustering and an alternating optimization (AO) algorithm after the PR clustering to maximize the EE of Symbiotic radio network. We illustrate the proposed approach’s superiority over conventional benchmarks with the help of simulation results.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 10\",\"pages\":\"2318-2322\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643753/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643753/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们开发了一个基于分析建模和机器学习(ML)的两阶段框架,用于分析和优化一种通信设置,在这种设置中,支持大规模多输入多输出(mMIMO)多用户非正交多址(NOMA)的主网络(PN)的主接收器(PR)与支持反向散射的标签发射器(ST)的辅助网络(SN)共存。主网络提供无线电频率信号,以激励其反向散射通信信道中的半被动 ST,同时从 ST 所需信号的反向散射中获得空间分集。我们的目标是联合优化主发射机(PT)波束成形、PRs 聚类和 STs 反射系数,以实现最高能效(EE)。我们针对 PR 聚类提出了一种基于 ML 的修正均值移动聚类,并在 PR 聚类后提出了一种交替优化 (AO) 算法,以实现共生无线网络的能效最大化。我们借助仿真结果说明了所提出的方法优于传统基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficiency With Massive MIMO MU-NOMA in Symbiotic BackCom IoT Networks
In this letter, we develop a two-stage framework, based on both analytical modeling and machine learning (ML), for the analysis and optimization of a communication setup where the primary receivers (PRs) of a massive multiple-input multiple-output (mMIMO) multi-user non-orthogonal multiple access (NOMA) enabled primary network (PN) coexist symbiotically with a secondary network (SN) of backscatter-enabled tag transmitters (STs). The PN provides radio frequency signals to excite the semi-passive STs in their backscatter communication channel while gaining spatial diversity from the backscattering of the STs’ desired signals. We aim to jointly optimize the primary transmitter (PT) beamforming, the PRs clustering, and the STs reflection coefficient to achieve maximal energy efficiency (EE). We propose an ML-based modified mean shift clustering for the PR clustering and an alternating optimization (AO) algorithm after the PR clustering to maximize the EE of Symbiotic radio network. We illustrate the proposed approach’s superiority over conventional benchmarks with the help of simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
Table of Contents IEEE Communications Letters Publication Information IEEE Communications Society Information Table of Contents IEEE Communications Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1