Abile Teshita, Waqif Khan, Abd Ullah, Babar Iqbal, Naveed Ahmad
{"title":"农业生态系统中的土壤线虫:将种植系统的根瘤生态学与线虫的结构和功能联系起来","authors":"Abile Teshita, Waqif Khan, Abd Ullah, Babar Iqbal, Naveed Ahmad","doi":"10.1007/s42729-024-01982-9","DOIUrl":null,"url":null,"abstract":"<p>Land use change and intensification though they contributed to increases in food production, have remained one of the main threats to soil biodiversity due to their negative impacts on the health and fertility of the soil. Nematodes have been used as a tool for assessing the structure and functions of soils in agroecosystems because indices of nematode community can reflect current changes and functions over time of the ecological processes in the soil. Although nematodes are largely considered important drivers in the decomposition of organic matter and nutrient cycling, their community structure and functional responses to land use change and intensification, and agricultural practices remain poorly understood. Therefore, this review aims to evaluate the response of soil nematodes to land use change and intensification, as well as the potential influence of management practices on their community structure and population dynamics. Besides, due to the fact that nematodes are soil inhabitants, their activities are largely controlled by the physical and biological conditions of the soil. A variation in the soil micro-ecological environment may affect their community structure and functional responses. Furthermore, we investigate the impact of agricultural intensification, such as monocropping, greater use of chemical fertilizers, and the application of pesticides on nematode populations. We also evaluate how sustainable agricultural techniques like organic farming, crop rotation, and decreased tillage affect the health of nematode populations. This study will give a thorough knowledge of how these factors interact to affect soil health and ecosystem function. Further insights about how root interactions in multi-species systems affect the rhizosphere ecology and influence the nematode community will be discussed.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Nematodes in Agroecosystems: Linking Cropping System’s Rhizosphere Ecology to Nematode Structure and Function\",\"authors\":\"Abile Teshita, Waqif Khan, Abd Ullah, Babar Iqbal, Naveed Ahmad\",\"doi\":\"10.1007/s42729-024-01982-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Land use change and intensification though they contributed to increases in food production, have remained one of the main threats to soil biodiversity due to their negative impacts on the health and fertility of the soil. Nematodes have been used as a tool for assessing the structure and functions of soils in agroecosystems because indices of nematode community can reflect current changes and functions over time of the ecological processes in the soil. Although nematodes are largely considered important drivers in the decomposition of organic matter and nutrient cycling, their community structure and functional responses to land use change and intensification, and agricultural practices remain poorly understood. Therefore, this review aims to evaluate the response of soil nematodes to land use change and intensification, as well as the potential influence of management practices on their community structure and population dynamics. Besides, due to the fact that nematodes are soil inhabitants, their activities are largely controlled by the physical and biological conditions of the soil. A variation in the soil micro-ecological environment may affect their community structure and functional responses. Furthermore, we investigate the impact of agricultural intensification, such as monocropping, greater use of chemical fertilizers, and the application of pesticides on nematode populations. We also evaluate how sustainable agricultural techniques like organic farming, crop rotation, and decreased tillage affect the health of nematode populations. This study will give a thorough knowledge of how these factors interact to affect soil health and ecosystem function. Further insights about how root interactions in multi-species systems affect the rhizosphere ecology and influence the nematode community will be discussed.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-01982-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01982-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil Nematodes in Agroecosystems: Linking Cropping System’s Rhizosphere Ecology to Nematode Structure and Function
Land use change and intensification though they contributed to increases in food production, have remained one of the main threats to soil biodiversity due to their negative impacts on the health and fertility of the soil. Nematodes have been used as a tool for assessing the structure and functions of soils in agroecosystems because indices of nematode community can reflect current changes and functions over time of the ecological processes in the soil. Although nematodes are largely considered important drivers in the decomposition of organic matter and nutrient cycling, their community structure and functional responses to land use change and intensification, and agricultural practices remain poorly understood. Therefore, this review aims to evaluate the response of soil nematodes to land use change and intensification, as well as the potential influence of management practices on their community structure and population dynamics. Besides, due to the fact that nematodes are soil inhabitants, their activities are largely controlled by the physical and biological conditions of the soil. A variation in the soil micro-ecological environment may affect their community structure and functional responses. Furthermore, we investigate the impact of agricultural intensification, such as monocropping, greater use of chemical fertilizers, and the application of pesticides on nematode populations. We also evaluate how sustainable agricultural techniques like organic farming, crop rotation, and decreased tillage affect the health of nematode populations. This study will give a thorough knowledge of how these factors interact to affect soil health and ecosystem function. Further insights about how root interactions in multi-species systems affect the rhizosphere ecology and influence the nematode community will be discussed.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.