旋耕法人工破碎基岩对土壤渗透的影响:中国浅山坡地的实地研究

IF 3.4 3区 农林科学 Q2 ENVIRONMENTAL SCIENCES Journal of Soil Science and Plant Nutrition Pub Date : 2024-08-26 DOI:10.1007/s42729-024-01986-5
Guohui Luo, Shikang Yu, Yunwei Han, Huizhan Gu, Xinkui Yang, Yu Li, Tao Wu, Fucheng Li
{"title":"旋耕法人工破碎基岩对土壤渗透的影响:中国浅山坡地的实地研究","authors":"Guohui Luo, Shikang Yu, Yunwei Han, Huizhan Gu, Xinkui Yang, Yu Li, Tao Wu, Fucheng Li","doi":"10.1007/s42729-024-01986-5","DOIUrl":null,"url":null,"abstract":"<p>In purple soil areas of China, there is a traditional practice of breaking up bedrock to obtain soil matrix by hoeing. Purple soil is formed by the development of mud shale with low hardness and high brittleness, which is easy to break under mechanical action. Research on the effect of deep vertical rotary tillage (DVRT) in breaking up the bedrock on soil infiltration performance is still lacking. This study selected a hillslope with 18 cm, 25 cm, and 40 cm soil depths at the upper, middle, and lower slopes, respectively. They investigated differences in soil infiltration capacity after DVRT and rotary tillage (RT) and identified the main controlling factors responsible for differences. The effects of different bedrock fragment contents (RFC, range 0-70%) and the bedrock size (0-5, 5-10, 10-20 mm) on saturated hydraulic conductivity (Ks) were investigated with laboratory tests by constant head method. Results are that (1) stabilized soil infiltration rates for the DVRT treatment increased by 150% and 81% relative to the RT treatment at the upper and middle slope positions, and the lower slope position decreased by 80%. (2) The Kostiakov model shows that the DVRT broken bedrock promotes soil infiltration performance on the upper and middle slopes but inhibits this at lower slope. (3) With increased RFC, saturated hydraulic conductivity decreased and then increased, and RFC thresholds existed to change the inhibition/promotion effect. The thresholds for bedrock fragments with grain sizes of 0-5, 5-10, and 10-20 mm were 74%, 59%, and 53%, respectively. It is suggested that DVRT can regulate the soil infiltration in shallow hillslopes and promote rainwater in-situ utilization.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Artificially Crushing Bedrock by Rotary Tillage on Soil Infiltration: A Field Study in a Shallow Hillslope in China\",\"authors\":\"Guohui Luo, Shikang Yu, Yunwei Han, Huizhan Gu, Xinkui Yang, Yu Li, Tao Wu, Fucheng Li\",\"doi\":\"10.1007/s42729-024-01986-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In purple soil areas of China, there is a traditional practice of breaking up bedrock to obtain soil matrix by hoeing. Purple soil is formed by the development of mud shale with low hardness and high brittleness, which is easy to break under mechanical action. Research on the effect of deep vertical rotary tillage (DVRT) in breaking up the bedrock on soil infiltration performance is still lacking. This study selected a hillslope with 18 cm, 25 cm, and 40 cm soil depths at the upper, middle, and lower slopes, respectively. They investigated differences in soil infiltration capacity after DVRT and rotary tillage (RT) and identified the main controlling factors responsible for differences. The effects of different bedrock fragment contents (RFC, range 0-70%) and the bedrock size (0-5, 5-10, 10-20 mm) on saturated hydraulic conductivity (Ks) were investigated with laboratory tests by constant head method. Results are that (1) stabilized soil infiltration rates for the DVRT treatment increased by 150% and 81% relative to the RT treatment at the upper and middle slope positions, and the lower slope position decreased by 80%. (2) The Kostiakov model shows that the DVRT broken bedrock promotes soil infiltration performance on the upper and middle slopes but inhibits this at lower slope. (3) With increased RFC, saturated hydraulic conductivity decreased and then increased, and RFC thresholds existed to change the inhibition/promotion effect. The thresholds for bedrock fragments with grain sizes of 0-5, 5-10, and 10-20 mm were 74%, 59%, and 53%, respectively. It is suggested that DVRT can regulate the soil infiltration in shallow hillslopes and promote rainwater in-situ utilization.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-01986-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01986-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在中国的紫色土地区,有一种传统的做法,即用锄头锄碎基岩以获得土壤基质。紫土是由硬度低、脆性大的泥页岩发育而成,在机械作用下容易破碎。关于深层垂直旋耕(DVRT)破碎基岩对土壤入渗性能影响的研究仍然缺乏。本研究选择了上坡、中坡和下坡土壤深度分别为 18 厘米、25 厘米和 40 厘米的山坡。他们研究了 DVRT 和旋耕(RT)后土壤入渗能力的差异,并确定了造成差异的主要控制因素。通过恒定水头法进行实验室测试,研究了不同基岩碎块含量(RFC,范围 0-70%)和基岩大小(0-5、5-10、10-20 毫米)对饱和导流系数(Ks)的影响。结果表明:(1) 与 RT 处理相比,DVRT 处理的稳定土壤入渗率在上坡和中坡位置分别提高了 150% 和 81%,而在下坡位置则降低了 80%。(2) Kostiakov 模型显示,DVRT 破碎基岩促进了上坡和中坡的土壤渗透性能,但抑制了下坡的土壤渗透性能。(3)随着 RFC 的增加,饱和导流系数先降低后升高,RFC 临界值的存在改变了抑制/促进效应。粒径为 0-5、5-10 和 10-20 毫米的基岩碎块的阈值分别为 74%、59% 和 53%。这表明 DVRT 可以调节浅山坡的土壤入渗,促进雨水就地利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Artificially Crushing Bedrock by Rotary Tillage on Soil Infiltration: A Field Study in a Shallow Hillslope in China

In purple soil areas of China, there is a traditional practice of breaking up bedrock to obtain soil matrix by hoeing. Purple soil is formed by the development of mud shale with low hardness and high brittleness, which is easy to break under mechanical action. Research on the effect of deep vertical rotary tillage (DVRT) in breaking up the bedrock on soil infiltration performance is still lacking. This study selected a hillslope with 18 cm, 25 cm, and 40 cm soil depths at the upper, middle, and lower slopes, respectively. They investigated differences in soil infiltration capacity after DVRT and rotary tillage (RT) and identified the main controlling factors responsible for differences. The effects of different bedrock fragment contents (RFC, range 0-70%) and the bedrock size (0-5, 5-10, 10-20 mm) on saturated hydraulic conductivity (Ks) were investigated with laboratory tests by constant head method. Results are that (1) stabilized soil infiltration rates for the DVRT treatment increased by 150% and 81% relative to the RT treatment at the upper and middle slope positions, and the lower slope position decreased by 80%. (2) The Kostiakov model shows that the DVRT broken bedrock promotes soil infiltration performance on the upper and middle slopes but inhibits this at lower slope. (3) With increased RFC, saturated hydraulic conductivity decreased and then increased, and RFC thresholds existed to change the inhibition/promotion effect. The thresholds for bedrock fragments with grain sizes of 0-5, 5-10, and 10-20 mm were 74%, 59%, and 53%, respectively. It is suggested that DVRT can regulate the soil infiltration in shallow hillslopes and promote rainwater in-situ utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soil Science and Plant Nutrition
Journal of Soil Science and Plant Nutrition Agricultural and Biological Sciences-Soil Science
CiteScore
5.90
自引率
10.30%
发文量
331
审稿时长
9 months
期刊介绍: The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science. Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration. Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies. Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome. The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.
期刊最新文献
Assessment of Management Practices for Improving Productivity, Profitability, and Energy-Carbon-Water Use Efficiency of Intensive Rice-toria-Sweet Corn System in Eastern India Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1