用于高分辨率食管测压图像自动诊断的双子座辅助深度学习分类模型

Q4 Medicine Medicina Pub Date : 2024-09-13 DOI:10.3390/medicina60091493
Stefan Lucian Popa, Teodora Surdea-Blaga, Dan Lucian Dumitrascu, Andrei Vasile Pop, Abdulrahman Ismaiel, Liliana David, Vlad Dumitru Brata, Daria Claudia Turtoi, Giuseppe Chiarioni, Edoardo Vincenzo Savarino, Imre Zsigmond, Zoltan Czako, Daniel Corneliu Leucuta
{"title":"用于高分辨率食管测压图像自动诊断的双子座辅助深度学习分类模型","authors":"Stefan Lucian Popa, Teodora Surdea-Blaga, Dan Lucian Dumitrascu, Andrei Vasile Pop, Abdulrahman Ismaiel, Liliana David, Vlad Dumitru Brata, Daria Claudia Turtoi, Giuseppe Chiarioni, Edoardo Vincenzo Savarino, Imre Zsigmond, Zoltan Czako, Daniel Corneliu Leucuta","doi":"10.3390/medicina60091493","DOIUrl":null,"url":null,"abstract":"Background/Objectives: To develop a deep learning model for esophageal motility disorder diagnosis using high-resolution manometry images with the aid of Gemini. Methods: Gemini assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. Results: The model demonstrated an overall precision of 0.89 on the testing set, with an accuracy of 0.88, a recall of 0.88, and an F1-score of 0.885. It presented better results for multiple categories, particularly in the panesophageal pressurization category, with precision = 0.99 and recall = 0.99, yielding a balanced F1-score of 0.99. Conclusions: This study demonstrates the potential of artificial intelligence, particularly Gemini, in aiding the creation of robust deep learning models for medical image analysis, solving not just simple binary classification problems but more complex, multi-class image classification tasks.","PeriodicalId":18512,"journal":{"name":"Medicina","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gemini-Assisted Deep Learning Classification Model for Automated Diagnosis of High-Resolution Esophageal Manometry Images\",\"authors\":\"Stefan Lucian Popa, Teodora Surdea-Blaga, Dan Lucian Dumitrascu, Andrei Vasile Pop, Abdulrahman Ismaiel, Liliana David, Vlad Dumitru Brata, Daria Claudia Turtoi, Giuseppe Chiarioni, Edoardo Vincenzo Savarino, Imre Zsigmond, Zoltan Czako, Daniel Corneliu Leucuta\",\"doi\":\"10.3390/medicina60091493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background/Objectives: To develop a deep learning model for esophageal motility disorder diagnosis using high-resolution manometry images with the aid of Gemini. Methods: Gemini assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. Results: The model demonstrated an overall precision of 0.89 on the testing set, with an accuracy of 0.88, a recall of 0.88, and an F1-score of 0.885. It presented better results for multiple categories, particularly in the panesophageal pressurization category, with precision = 0.99 and recall = 0.99, yielding a balanced F1-score of 0.99. Conclusions: This study demonstrates the potential of artificial intelligence, particularly Gemini, in aiding the creation of robust deep learning models for medical image analysis, solving not just simple binary classification problems but more complex, multi-class image classification tasks.\",\"PeriodicalId\":18512,\"journal\":{\"name\":\"Medicina\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/medicina60091493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/medicina60091493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景/目标:借助 Gemini,利用高分辨率测压图像开发一种用于食管运动障碍诊断的深度学习模型。方法:Gemini 通过协助代码编写、预处理、模型优化和故障排除来协助开发该模型。结果:该模型在测试集上的总体精确度为 0.89,准确度为 0.88,召回率为 0.88,F1 分数为 0.885。该模型在多个类别中取得了较好的结果,尤其是在食道泛压类别中,精确度 = 0.99,召回率 = 0.99,平衡 F1 分数为 0.99。结论这项研究展示了人工智能(尤其是 Gemini)在帮助创建用于医学图像分析的强大深度学习模型方面的潜力,它不仅能解决简单的二元分类问题,还能解决更复杂的多类图像分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gemini-Assisted Deep Learning Classification Model for Automated Diagnosis of High-Resolution Esophageal Manometry Images
Background/Objectives: To develop a deep learning model for esophageal motility disorder diagnosis using high-resolution manometry images with the aid of Gemini. Methods: Gemini assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. Results: The model demonstrated an overall precision of 0.89 on the testing set, with an accuracy of 0.88, a recall of 0.88, and an F1-score of 0.885. It presented better results for multiple categories, particularly in the panesophageal pressurization category, with precision = 0.99 and recall = 0.99, yielding a balanced F1-score of 0.99. Conclusions: This study demonstrates the potential of artificial intelligence, particularly Gemini, in aiding the creation of robust deep learning models for medical image analysis, solving not just simple binary classification problems but more complex, multi-class image classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicina
Medicina Medicine-Medicine (all)
CiteScore
0.10
自引率
0.00%
发文量
66
审稿时长
24 weeks
期刊介绍: Publicada con el apoyo del Ministerio de Ciencia, Tecnología e Innovación Productiva. Medicina no tiene propósitos comerciales. El objeto de su creación ha sido propender al adelanto de la medicina argentina. Los beneficios que pudieran obtenerse serán aplicados exclusivamente a ese fin.
期刊最新文献
Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections Intravital Position Study of the Clinical Anatomy of the Middle Lobe and Superior Poles of the Thyroid Gland An Analysis of Emergency Surgical Outcomes for Pediatric Traumatic Brain Injury: A Ten-Year Single-Institute Retrospective Study in Taiwan Evaluation of Left Atrial Electromechanical Delay and Left Atrial Phasic Functions in Patients Undergoing Treatment with Cardiotoxic Chemotherapeutic Agents Self-Reported Gastrointestinal Symptoms Associated with NSAIDs and Caffeine Consumption in a Jordanian Subpopulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1