考虑误差补偿和实时分解的 TCN-GRU 短期负荷两阶段预测

IF 2.7 4区 地球科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Earth Science Informatics Pub Date : 2024-08-26 DOI:10.1007/s12145-024-01456-7
Yang Li, Yongsheng Ye, Yanlong Xu, Lili Li, Xi Chen, Jianghua Huang
{"title":"考虑误差补偿和实时分解的 TCN-GRU 短期负荷两阶段预测","authors":"Yang Li, Yongsheng Ye, Yanlong Xu, Lili Li, Xi Chen, Jianghua Huang","doi":"10.1007/s12145-024-01456-7","DOIUrl":null,"url":null,"abstract":"<p>With the continuous development of power system and the growth of load demand, accurate short-term load forecasting (SLTF) provides reliable guidance for power system operation and scheduling. Therefore, this paper proposes a two-stage short-term load forecasting method. In the first stage, the original load is processed by improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN). The time series features of the load are extracted by temporal convolutional network (TCN), which is used as an input to realize the initial load prediction based on gated recurrent unit (GRU). At the same time, in order to overcome the problem that the prediction model established by the original subsequence has insufficient adaptability in the newly decomposed subsequence, the real-time decomposition strategy is adopted to improve the generalization ability of the model. To further improve the prediction accuracy, an error compensation strategy is constructed in the second stage. The strategy uses adaptive variational mode decomposition (AVMD) to reduce the unpredictability of the error sequence and corrects the initial prediction results based on the temporal convolutional network-gated recurrent unit (TCN-GRU) error compensator. The proposed two-stage forecasting method was evaluated using load data from Queensland, Australia. The analysis results show that the proposed method can better capture the nonlinearity and non-stationarity in the load data. The mean absolute percentage error of its prediction is 0.819%, which are lower than the other compared models, indicating its high applicability in SLTF.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage forecasting of TCN-GRU short-term load considering error compensation and real-time decomposition\",\"authors\":\"Yang Li, Yongsheng Ye, Yanlong Xu, Lili Li, Xi Chen, Jianghua Huang\",\"doi\":\"10.1007/s12145-024-01456-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the continuous development of power system and the growth of load demand, accurate short-term load forecasting (SLTF) provides reliable guidance for power system operation and scheduling. Therefore, this paper proposes a two-stage short-term load forecasting method. In the first stage, the original load is processed by improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN). The time series features of the load are extracted by temporal convolutional network (TCN), which is used as an input to realize the initial load prediction based on gated recurrent unit (GRU). At the same time, in order to overcome the problem that the prediction model established by the original subsequence has insufficient adaptability in the newly decomposed subsequence, the real-time decomposition strategy is adopted to improve the generalization ability of the model. To further improve the prediction accuracy, an error compensation strategy is constructed in the second stage. The strategy uses adaptive variational mode decomposition (AVMD) to reduce the unpredictability of the error sequence and corrects the initial prediction results based on the temporal convolutional network-gated recurrent unit (TCN-GRU) error compensator. The proposed two-stage forecasting method was evaluated using load data from Queensland, Australia. The analysis results show that the proposed method can better capture the nonlinearity and non-stationarity in the load data. The mean absolute percentage error of its prediction is 0.819%, which are lower than the other compared models, indicating its high applicability in SLTF.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01456-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01456-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着电力系统的不断发展和负荷需求的增长,准确的短期负荷预测(SLTF)为电力系统的运行和调度提供了可靠的指导。因此,本文提出了一种两阶段短期负荷预测方法。在第一阶段,用带自适应噪声的改进型完全集合经验模式分解(ICEEMDAN)处理原始负荷。通过时序卷积网络(TCN)提取负荷的时间序列特征,并以此为输入,实现基于门控递归单元(GRU)的初始负荷预测。同时,为了克服原始子序列建立的预测模型在新分解的子序列中适应性不足的问题,采用了实时分解策略来提高模型的泛化能力。为了进一步提高预测精度,第二阶段构建了误差补偿策略。该策略使用自适应变异模式分解(AVMD)来降低误差序列的不可预测性,并基于时序卷积网络门控递归单元(TCN-GRU)误差补偿器修正初始预测结果。利用澳大利亚昆士兰州的负荷数据对所提出的两阶段预测方法进行了评估。分析结果表明,所提出的方法能更好地捕捉到负荷数据中的非线性和非平稳性。其预测的平均绝对百分比误差为 0.819%,低于其他比较模型,表明其在 SLTF 中具有较高的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-stage forecasting of TCN-GRU short-term load considering error compensation and real-time decomposition

With the continuous development of power system and the growth of load demand, accurate short-term load forecasting (SLTF) provides reliable guidance for power system operation and scheduling. Therefore, this paper proposes a two-stage short-term load forecasting method. In the first stage, the original load is processed by improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN). The time series features of the load are extracted by temporal convolutional network (TCN), which is used as an input to realize the initial load prediction based on gated recurrent unit (GRU). At the same time, in order to overcome the problem that the prediction model established by the original subsequence has insufficient adaptability in the newly decomposed subsequence, the real-time decomposition strategy is adopted to improve the generalization ability of the model. To further improve the prediction accuracy, an error compensation strategy is constructed in the second stage. The strategy uses adaptive variational mode decomposition (AVMD) to reduce the unpredictability of the error sequence and corrects the initial prediction results based on the temporal convolutional network-gated recurrent unit (TCN-GRU) error compensator. The proposed two-stage forecasting method was evaluated using load data from Queensland, Australia. The analysis results show that the proposed method can better capture the nonlinearity and non-stationarity in the load data. The mean absolute percentage error of its prediction is 0.819%, which are lower than the other compared models, indicating its high applicability in SLTF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Science Informatics
Earth Science Informatics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
4.60
自引率
3.60%
发文量
157
审稿时长
4.3 months
期刊介绍: The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.
期刊最新文献
Estimation of the elastic modulus of basaltic rocks using machine learning methods Feature-adaptive FPN with multiscale context integration for underwater object detection Autoregressive modelling of tropospheric radio refractivity over selected locations in tropical Nigeria using artificial neural network Time series land subsidence monitoring and prediction based on SBAS-InSAR and GeoTemporal transformer model Drought index time series forecasting via three-in-one machine learning concept for the Euphrates basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1