{"title":"分数随机正则模型的市场信息","authors":"Daniele Angelini, Matthieu Garcin","doi":"arxiv-2409.07159","DOIUrl":null,"url":null,"abstract":"The Fractional Stochastic Regularity Model (FSRM) is an extension of\nBlack-Scholes model describing the multifractal nature of prices. It is based\non a multifractional process with a random Hurst exponent $H_t$, driven by a\nfractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter\n$H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when\n$H_t\\neq 1/2$ past price returns contain some information on a future trend or\nmean-reversion of the log-price process. In this paper, we investigate some\nproperties of the fOU process and, thanks to information theory and Shannon's\nentropy, we determine theoretically the serial information of the regularity\nprocess $H_t$ of the FSRM, giving some insight into one's ability to forecast\nfuture price increments and to build statistical arbitrages with this model.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Market information of the fractional stochastic regularity model\",\"authors\":\"Daniele Angelini, Matthieu Garcin\",\"doi\":\"arxiv-2409.07159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fractional Stochastic Regularity Model (FSRM) is an extension of\\nBlack-Scholes model describing the multifractal nature of prices. It is based\\non a multifractional process with a random Hurst exponent $H_t$, driven by a\\nfractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter\\n$H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when\\n$H_t\\\\neq 1/2$ past price returns contain some information on a future trend or\\nmean-reversion of the log-price process. In this paper, we investigate some\\nproperties of the fOU process and, thanks to information theory and Shannon's\\nentropy, we determine theoretically the serial information of the regularity\\nprocess $H_t$ of the FSRM, giving some insight into one's ability to forecast\\nfuture price increments and to build statistical arbitrages with this model.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
分数随机正则模型(FSRM)是布莱克-斯科尔斯(Black-Scholes)模型的扩展,描述了价格的多分性。它基于一个具有随机赫斯特指数 $H_t$ 的多分形过程,由分形奥恩斯坦-乌伦贝克(fOU)过程驱动。当规律性参数$H_t$等于1/2$时,有效市场假说成立,但当$H_t/neq为1/2$时,过去的价格回报包含了对数价格过程未来趋势或均值反转的一些信息。在本文中,我们研究了 fOU 过程的一些特性,并借助信息论和香农熵,从理论上确定了 FSRM 的正则过程 $H_t$ 的序列信息,从而对预测未来价格增量和利用该模型建立统计套利的能力有了一定的了解。
Market information of the fractional stochastic regularity model
The Fractional Stochastic Regularity Model (FSRM) is an extension of
Black-Scholes model describing the multifractal nature of prices. It is based
on a multifractional process with a random Hurst exponent $H_t$, driven by a
fractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter
$H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when
$H_t\neq 1/2$ past price returns contain some information on a future trend or
mean-reversion of the log-price process. In this paper, we investigate some
properties of the fOU process and, thanks to information theory and Shannon's
entropy, we determine theoretically the serial information of the regularity
process $H_t$ of the FSRM, giving some insight into one's ability to forecast
future price increments and to build statistical arbitrages with this model.