{"title":"冷氢等离子体中的激光辅助辐射重组","authors":"I I Fabrikant and H B Ambalampitiya","doi":"10.1088/1361-6455/ad75f6","DOIUrl":null,"url":null,"abstract":"We study the process of laser-assisted radiative recombination of an electron with a proton in a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation of classical trajectories in combined laser and Coulomb fields and the use of the correspondence principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the cross section, as compared to the laser-free case, is observed in this case. With increasing angle between the electron momentum and polarization, the recombination cross section drops. However, even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of the recombination rate constant, as compared to the zero-field case. For the field intensities in the range 30–350 MW cm−2, the enhancement occurs in the region of the radiation wavelength from 5 to 20 µm and for the plasma temperature from 20 to 300 K.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"34-35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-assisted radiative recombination in a cold hydrogen plasma\",\"authors\":\"I I Fabrikant and H B Ambalampitiya\",\"doi\":\"10.1088/1361-6455/ad75f6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the process of laser-assisted radiative recombination of an electron with a proton in a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation of classical trajectories in combined laser and Coulomb fields and the use of the correspondence principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the cross section, as compared to the laser-free case, is observed in this case. With increasing angle between the electron momentum and polarization, the recombination cross section drops. However, even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of the recombination rate constant, as compared to the zero-field case. For the field intensities in the range 30–350 MW cm−2, the enhancement occurs in the region of the radiation wavelength from 5 to 20 µm and for the plasma temperature from 20 to 300 K.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\"34-35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad75f6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad75f6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Laser-assisted radiative recombination in a cold hydrogen plasma
We study the process of laser-assisted radiative recombination of an electron with a proton in a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation of classical trajectories in combined laser and Coulomb fields and the use of the correspondence principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the cross section, as compared to the laser-free case, is observed in this case. With increasing angle between the electron momentum and polarization, the recombination cross section drops. However, even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of the recombination rate constant, as compared to the zero-field case. For the field intensities in the range 30–350 MW cm−2, the enhancement occurs in the region of the radiation wavelength from 5 to 20 µm and for the plasma temperature from 20 to 300 K.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.