EX-DRL:利用极端分布强化学习抵御严重损失

Parvin Malekzadeh, Zissis Poulos, Jacky Chen, Zeyu Wang, Konstantinos N. Plataniotis
{"title":"EX-DRL:利用极端分布强化学习抵御严重损失","authors":"Parvin Malekzadeh, Zissis Poulos, Jacky Chen, Zeyu Wang, Konstantinos N. Plataniotis","doi":"arxiv-2408.12446","DOIUrl":null,"url":null,"abstract":"Recent advancements in Distributional Reinforcement Learning (DRL) for\nmodeling loss distributions have shown promise in developing hedging strategies\nin derivatives markets. A common approach in DRL involves learning the\nquantiles of loss distributions at specified levels using Quantile Regression\n(QR). This method is particularly effective in option hedging due to its direct\nquantile-based risk assessment, such as Value at Risk (VaR) and Conditional\nValue at Risk (CVaR). However, these risk measures depend on the accurate\nestimation of extreme quantiles in the loss distribution's tail, which can be\nimprecise in QR-based DRL due to the rarity and extremity of tail data, as\nhighlighted in the literature. To address this issue, we propose EXtreme DRL\n(EX-DRL), which enhances extreme quantile prediction by modeling the tail of\nthe loss distribution with a Generalized Pareto Distribution (GPD). This method\nintroduces supplementary data to mitigate the scarcity of extreme quantile\nobservations, thereby improving estimation accuracy through QR. Comprehensive\nexperiments on gamma hedging options demonstrate that EX-DRL improves existing\nQR-based models by providing more precise estimates of extreme quantiles,\nthereby improving the computation and reliability of risk metrics for complex\nfinancial risk management.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning\",\"authors\":\"Parvin Malekzadeh, Zissis Poulos, Jacky Chen, Zeyu Wang, Konstantinos N. Plataniotis\",\"doi\":\"arxiv-2408.12446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in Distributional Reinforcement Learning (DRL) for\\nmodeling loss distributions have shown promise in developing hedging strategies\\nin derivatives markets. A common approach in DRL involves learning the\\nquantiles of loss distributions at specified levels using Quantile Regression\\n(QR). This method is particularly effective in option hedging due to its direct\\nquantile-based risk assessment, such as Value at Risk (VaR) and Conditional\\nValue at Risk (CVaR). However, these risk measures depend on the accurate\\nestimation of extreme quantiles in the loss distribution's tail, which can be\\nimprecise in QR-based DRL due to the rarity and extremity of tail data, as\\nhighlighted in the literature. To address this issue, we propose EXtreme DRL\\n(EX-DRL), which enhances extreme quantile prediction by modeling the tail of\\nthe loss distribution with a Generalized Pareto Distribution (GPD). This method\\nintroduces supplementary data to mitigate the scarcity of extreme quantile\\nobservations, thereby improving estimation accuracy through QR. Comprehensive\\nexperiments on gamma hedging options demonstrate that EX-DRL improves existing\\nQR-based models by providing more precise estimates of extreme quantiles,\\nthereby improving the computation and reliability of risk metrics for complex\\nfinancial risk management.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布强化学习(DRL)在损失分布建模方面的最新进展,为衍生品市场对冲策略的开发带来了希望。DRL 中的一种常见方法是利用定量回归(QR)学习指定水平上损失分布的定量。这种方法在期权对冲中尤为有效,因为它可以直接进行基于量值的风险评估,如风险值(VaR)和条件风险值(CVaR)。然而,这些风险度量依赖于对损失分布尾部极端量值的精确估计,由于尾部数据的稀缺性和极端性,基于 QR 的 DRL 难以精确估计尾部数据。为了解决这个问题,我们提出了 EXtreme DRL(EX-DRL),它通过使用广义帕累托分布(GPD)对损失分布的尾部进行建模,从而增强了极端量值预测。该方法引入了补充数据,以缓解极端量级观测数据稀缺的问题,从而通过 QR 提高了估计精度。对伽马对冲期权的综合实验表明,EX-DRL 改进了现有的基于 QR 的模型,提供了更精确的极端量值估计,从而改进了用于综合金融风险管理的风险度量的计算和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning
Recent advancements in Distributional Reinforcement Learning (DRL) for modeling loss distributions have shown promise in developing hedging strategies in derivatives markets. A common approach in DRL involves learning the quantiles of loss distributions at specified levels using Quantile Regression (QR). This method is particularly effective in option hedging due to its direct quantile-based risk assessment, such as Value at Risk (VaR) and Conditional Value at Risk (CVaR). However, these risk measures depend on the accurate estimation of extreme quantiles in the loss distribution's tail, which can be imprecise in QR-based DRL due to the rarity and extremity of tail data, as highlighted in the literature. To address this issue, we propose EXtreme DRL (EX-DRL), which enhances extreme quantile prediction by modeling the tail of the loss distribution with a Generalized Pareto Distribution (GPD). This method introduces supplementary data to mitigate the scarcity of extreme quantile observations, thereby improving estimation accuracy through QR. Comprehensive experiments on gamma hedging options demonstrate that EX-DRL improves existing QR-based models by providing more precise estimates of extreme quantiles, thereby improving the computation and reliability of risk metrics for complex financial risk management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1