利用 RNN 和 LSTM 对印度股市进行同步分析:基于阈值的分类方法

Sanjay Sathish, Charu C Sharma
{"title":"利用 RNN 和 LSTM 对印度股市进行同步分析:基于阈值的分类方法","authors":"Sanjay Sathish, Charu C Sharma","doi":"arxiv-2409.06728","DOIUrl":null,"url":null,"abstract":"Our research presents a new approach for forecasting the synchronization of\nstock prices using machine learning and non-linear time-series analysis. To\ncapture the complex non-linear relationships between stock prices, we utilize\nrecurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By\ntransforming Cross Recurrence Plot (CRP) data into a time-series format, we\nenable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory\n(LSTM) networks for predicting stock price synchronization through both\nregression and classification. We apply this methodology to a dataset of 20\nhighly capitalized stocks from the Indian market over a 21-year period. The\nfindings reveal that our approach can predict stock price synchronization, with\nan accuracy of 0.98 and F1 score of 0.83 offering valuable insights for\ndeveloping effective trading strategies and risk management tools.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach\",\"authors\":\"Sanjay Sathish, Charu C Sharma\",\"doi\":\"arxiv-2409.06728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research presents a new approach for forecasting the synchronization of\\nstock prices using machine learning and non-linear time-series analysis. To\\ncapture the complex non-linear relationships between stock prices, we utilize\\nrecurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By\\ntransforming Cross Recurrence Plot (CRP) data into a time-series format, we\\nenable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory\\n(LSTM) networks for predicting stock price synchronization through both\\nregression and classification. We apply this methodology to a dataset of 20\\nhighly capitalized stocks from the Indian market over a 21-year period. The\\nfindings reveal that our approach can predict stock price synchronization, with\\nan accuracy of 0.98 and F1 score of 0.83 offering valuable insights for\\ndeveloping effective trading strategies and risk management tools.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究提出了一种利用机器学习和非线性时间序列分析预测股票价格同步性的新方法。为了捕捉股票价格之间复杂的非线性关系,我们利用了复现图(RP)和交叉复现量化分析(CRQA)。通过将交叉复现图(CRP)数据转换为时间序列格式,我们可以使用递归神经网络(RNN)和长短期记忆(LSTM)网络,通过回归和分类预测股价同步性。我们将这一方法应用于印度市场 21 年间 20 只高市值股票的数据集。研究结果表明,我们的方法可以预测股价同步性,准确率为 0.98,F1 得分为 0.83,为开发有效的交易策略和风险管理工具提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach
Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis. To capture the complex non-linear relationships between stock prices, we utilize recurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By transforming Cross Recurrence Plot (CRP) data into a time-series format, we enable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks for predicting stock price synchronization through both regression and classification. We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period. The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83 offering valuable insights for developing effective trading strategies and risk management tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1