Christina Yu, Ralf W. Schlosser, Maurício Fontana de Vargas, Leigh Anne White, Rajinder Koul, Howard C. Shane
{"title":"QuickPic AAC:基于人工智能的应用程序,可及时为微言者生成特定主题的显示屏","authors":"Christina Yu, Ralf W. Schlosser, Maurício Fontana de Vargas, Leigh Anne White, Rajinder Koul, Howard C. Shane","doi":"10.3390/ijerph21091150","DOIUrl":null,"url":null,"abstract":"As artificial intelligence (AI) makes significant headway in various arenas, the field of speech–language pathology is at the precipice of experiencing a transformative shift towards automation. This study introduces QuickPic AAC, an AI-driven application designed to generate topic-specific displays from photographs in a “just-in-time” manner. Using QuickPic AAC, this study aimed to (a) determine which of two AI algorithms (NLG-AAC and GPT-3.5) results in greater specificity of vocabulary (i.e., percentage of vocabulary kept/deleted by clinician relative to vocabulary generated by QuickPic AAC; percentage of vocabulary modified); and to (b) evaluate perceived usability of QuickPic AAC among practicing speech–language pathologists. Results revealed that the GPT-3.5 algorithm consistently resulted in greater specificity of vocabulary and that speech–language pathologists expressed high user satisfaction for the QuickPic AAC application. These results support continued study of the implementation of QuickPic AAC in clinical practice and demonstrate the possibility of utilizing topic-specific displays as just-in-time supports.","PeriodicalId":14044,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuickPic AAC: An AI-Based Application to Enable Just-in-Time Generation of Topic-Specific Displays for Persons Who Are Minimally Speaking\",\"authors\":\"Christina Yu, Ralf W. Schlosser, Maurício Fontana de Vargas, Leigh Anne White, Rajinder Koul, Howard C. Shane\",\"doi\":\"10.3390/ijerph21091150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As artificial intelligence (AI) makes significant headway in various arenas, the field of speech–language pathology is at the precipice of experiencing a transformative shift towards automation. This study introduces QuickPic AAC, an AI-driven application designed to generate topic-specific displays from photographs in a “just-in-time” manner. Using QuickPic AAC, this study aimed to (a) determine which of two AI algorithms (NLG-AAC and GPT-3.5) results in greater specificity of vocabulary (i.e., percentage of vocabulary kept/deleted by clinician relative to vocabulary generated by QuickPic AAC; percentage of vocabulary modified); and to (b) evaluate perceived usability of QuickPic AAC among practicing speech–language pathologists. Results revealed that the GPT-3.5 algorithm consistently resulted in greater specificity of vocabulary and that speech–language pathologists expressed high user satisfaction for the QuickPic AAC application. These results support continued study of the implementation of QuickPic AAC in clinical practice and demonstrate the possibility of utilizing topic-specific displays as just-in-time supports.\",\"PeriodicalId\":14044,\"journal\":{\"name\":\"International Journal of Environmental Research and Public Health\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research and Public Health\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/ijerph21091150\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph21091150","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
QuickPic AAC: An AI-Based Application to Enable Just-in-Time Generation of Topic-Specific Displays for Persons Who Are Minimally Speaking
As artificial intelligence (AI) makes significant headway in various arenas, the field of speech–language pathology is at the precipice of experiencing a transformative shift towards automation. This study introduces QuickPic AAC, an AI-driven application designed to generate topic-specific displays from photographs in a “just-in-time” manner. Using QuickPic AAC, this study aimed to (a) determine which of two AI algorithms (NLG-AAC and GPT-3.5) results in greater specificity of vocabulary (i.e., percentage of vocabulary kept/deleted by clinician relative to vocabulary generated by QuickPic AAC; percentage of vocabulary modified); and to (b) evaluate perceived usability of QuickPic AAC among practicing speech–language pathologists. Results revealed that the GPT-3.5 algorithm consistently resulted in greater specificity of vocabulary and that speech–language pathologists expressed high user satisfaction for the QuickPic AAC application. These results support continued study of the implementation of QuickPic AAC in clinical practice and demonstrate the possibility of utilizing topic-specific displays as just-in-time supports.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.